Claim Missing Document
Check
Articles

KENDALI OPTIMAL PADA MASALAH INVENTORI YANG MENGALAMI PENINGKATAN Affandi, Pardi; Faisal, Faisal; Yulida, Yuni
Jurnal Fisika FLUX Vol 12, No 1 (2015): Jurnal Fisika FLUX Edisi Februari 2015
Publisher : Lambung Mangkurat University Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/flux.v12i1.1307

Abstract

Banyak  permasalahan yang melibatkan teori sistem dan teori kontrol serta aplikasinya.Beberapa referensi teori yang mengaplikasikan teori kontrol ke dalam masalah inventori. Masalah klasik dalam masalah inventori adalah bagaimana mengatur perubahan permintaan konsumen pada sebuah produk barang jadi. Selain mengalami penurunan ternyata inventori juga bisa mengalami peningkatan, biasanya inventori yang mengalami peningkatan adalah terjadi pada inventori dikarenakan adanya proses produksi yang berlangsung secara terus menerus sedangkan permintaansedikit. Pada saat proses produksi berlangsung secara terus menerus menyebabkan bertambahnya jumlah inventori. Hal ini mengakibatkan terjadinya peningkatan jumlah inventori.Masalah ini salah satunya dapat dimodelkan dan diselesaikan dengan menggunakan teknik kontrol optimal
A MATHEMATIC MODEL OF TWO MUTUALLY INTERACTING SPECIES WITH MORTALITY RATE FOR THE SECOND SPECIES Rahayu, Annisa; Yulida, Yuni; Faisal, Faisal
TROPICAL WETLAND JOURNAL Vol 3, No 2 (2017)
Publisher : The Journal is published by Graduate Programe of Lambung Mangkurat University

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

One of the interactions that occur withinthe ecosystem is the interaction of mutualism. Such mutualism interactions can be modeled into mathematical models. Reddy (2011) study suggests a model of two mutually interactingspecies that assumes that each species can live without its mutualism partner. In fact, not all mutual species survive without their mutualism pairs. If it is assumed that the second species lives without its mutualism partner, the firstspecies, then the natural growth rate of the second species population will decrease (the mortality rate). The purpose of this research is to explain the model of two mutually interacting species with mortality rate for the second species, to determine the equilibrium point and the type of stability, and to simulate them with several parameters. This research was done by way of literature studies. The result of this research is the model of two mutually interacting species with mortality rate for second species modeled using Nonlinear Differential Equation System. In the model, it was obtained 3 (three) points of equilibrium, with each type and type of stability investigated. Next up from the stability, model simulations were done. Based on several simulationsconducted can be seen the value of parameters and initial values affect the population growth of both species. The interaction model of two mutual species will be stable if the first species survive and the second species over time will beextinct.
A MATHEMATIC MODEL OF TWO MUTUALLY INTERACTING SPECIES WITH MORTALITY RATE FOR THE SECOND SPECIES Annisa Rahayu; Yuni Yulida; Faisal Faisal
TROPICAL WETLAND JOURNAL Vol 3 No 2 (2017): Tropical Wetland Journal
Publisher : Postgraduate Program - Lambung Mangkurat University (ULM Press Academic)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/twj.v3i2.50

Abstract

One of the interactions that occur withinthe ecosystem is the interaction of mutualism. Such mutualism interactions can be modeled into mathematical models. Reddy (2011) study suggests a model of two mutually interacting species that assumes that each species can live without its mutualism partner. In fact, not all mutual species survive without their mutualism pairs. If it is assumed that the second species lives without its mutualism partner, the first species, then the natural growth rate of the second species population will decrease (the mortality rate). The purpose of this research is to explain the model of two mutually interacting species with mortality rate for the second species, to determine the equilibrium point and the type of stability, and to simulate them with several parameters. This research was done by way of literature studies. The result of this research is the model of two mutually interacting species with mortality rate for second species modeled using Nonlinear Differential Equation System. In the model, it was obtained 3 (three) points of equilibrium, with each type and type of stability investigated. Next up from the stability, model simulations were done. Based on several simulations conducted can be seen the value of parameters and initial values affect the population growth of both species. The interaction model of two mutual species will be stable if the first species survive and the second species over time will be extinct.
KENDALI OPTIMAL PADA MASALAH INVENTORI YANG MENGALAMI PENINGKATAN Pardi Affandi; Faisal Faisal; Yuni Yulida
Jurnal Fisika FLUX Vol 12, No 1 (2015): Jurnal Fisika FLUX Edisi Februari 2015
Publisher : Lambung Mangkurat University Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (497.354 KB) | DOI: 10.20527/flux.v12i1.1307

Abstract

Banyak  permasalahan yang melibatkan teori sistem dan teori kontrol serta aplikasinya.Beberapa referensi teori yang mengaplikasikan teori kontrol ke dalam masalah inventori. Masalah klasik dalam masalah inventori adalah bagaimana mengatur perubahan permintaan konsumen pada sebuah produk barang jadi. Selain mengalami penurunan ternyata inventori juga bisa mengalami peningkatan, biasanya inventori yang mengalami peningkatan adalah terjadi pada inventori dikarenakan adanya proses produksi yang berlangsung secara terus menerus sedangkan permintaansedikit. Pada saat proses produksi berlangsung secara terus menerus menyebabkan bertambahnya jumlah inventori. Hal ini mengakibatkan terjadinya peningkatan jumlah inventori.Masalah ini salah satunya dapat dimodelkan dan diselesaikan dengan menggunakan teknik kontrol optimal
Analisa Kestabilan dan Solusi Pendekatan Pada Persamaan Van der Pol Yuni Yulida; Muhammad Ahsar Karim
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 3, No 2 (2019): October
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2719.307 KB) | DOI: 10.31764/jtam.v3i2.1084

Abstract

Abstrak: Di dalam tulisan ini disajikan analisa kestabilan, diselidiki eksistensi dan kestabilan limit cycle, dan ditentukan solusi pendekatan dengan menggunakan metode multiple scale dari persamaan Van der Pol. Penelitian ini dilakukan dalam tiga tahapan metode. Pertama, menganalisa perilaku dinamik persamaan Van der Pol di sekitar ekuilibrium, meliputi transformasi persamaan ke sistem persamaan, analisa kestabilan persamaan melalui linearisasi, dan analisa kemungkinan terjadinya bifukasi pada persamaan. Kedua, membuktikan eksistensi dan kestabilan limit cycle dari persamaan Van der Pol dengan menggunakan teorema Lienard. Ketiga, menentukan solusi pendekatan dari persamaan Van der Pol dengan menggunakan metode multiple scale. Hasil penelitian adalah, berdasarkan variasi nilai parameter kekuatan redaman, daerah kestabilan dari persamaan Van der Pol terbagi menjadi tiga. Untuk parameter kekuatan redaman bernilai positif mengakibatkan ekuilibrium tidak stabil, dan sebaliknya, untuk parameter kekuatan redaman bernilai negatif mengakibatkan ekuilibrium stabil asimtotik, serta tanpa kekuatan redaman mengakibatkan ekuilibrium stabil. Pada kondisi tanpa kekuatan redaman, persamaan Van der Pol memiliki solusi periodik dan mengalami bifurkasi hopf. Selain itu, dengan menggunakan teorema Lienard dapat dibuktikan bahwa solusi periodik dari persamaan Van der Pol berupa limit cycle yang stabil. Pada akhirnya, dengan menggunakan metode multiple scale dan memberikan variasi nilai amplitudo awal dapat ditunjukkan bahwa solusi persamaan Van der Pol konvergen ke solusi periodik dengan periode dua. Abstract: In this paper, the stability analysis is given, the existence and stability of the limit cycle are investigated, and the approach solution is determined using the multiple scale method of the Van der Pol equation. This research was conducted in three stages of method. First, analyzing the dynamic behavior of the equation around the equilibrium, including the transformation of equations into a system of equations, analysis of the stability of equations through linearization, and analysis of the possibility of bifurcation of the equations. Second, the existence and stability of the limit cycle of the equation are proved using the Lienard theorem. Third, the approach solution of the Van der Pol equation is determined using the multiple scale method. Our results, based on variations in the values of the damping strength parameters, the stability region of the Van der Pol equation is divided into three types. For the positive value, it is resulting in unstable equilibrium, and contrary, for the negative value, it is resulting in asymptotic stable equilibrium, and without the damping force, it is resulting in stable equilibrium. In conditions without damping force, the Van der Pol equation has a periodic solution and has hopf bifurcation. In addition, by using the Lienard theorem, it is proven that the periodic solution is a stable limit cycle. Finally, by using the multiple scale method with varying the initial amplitude values, it is shown that the solution of the Van der Pol equation is converge to a periodic solution with a period of two.
Belajar dari Rumah: Pelatihan Kompetisi Sains Nasional Tingkat SMP Bidang Matematika di Masa Pandemi Muhammad Ahsar Karim; Yuni Yulida; Muhammad Mahfuzh Shiddiq; Miftahul Jannah; Gian Septiansyah
Bubungan Tinggi: Jurnal Pengabdian Masyarakat Vol 4, No 1 (2022)
Publisher : Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/btjpm.v4i1.4712

Abstract

Kegiatan Pengabdian pada Masyarakat ini berbentuk pelatihan online dan bertujuan untuk berbagi pengetahuan tentang teknis pelaksanaan, silabus, serta tips dan trik di dalam menyelesaikan soal-soal pada Kompetisi Sains Nasional (KSN) tingkat SMP di bidang Matematika. Kegiatan ini dilakukan selama dua hari pada bulan Juli tahun 2021. Peserta kegiatan ini adalah para guru matematika dan siswa-siswi di SMP IT Qardhan Hasana, Kota Banjarbaru, Provinsi Kalimantan Selatan, yang terdiri dari 3 orang guru matematika dan 74 orang siswa. Pelatihan ini berjalan lancar dan dapat menjadi solusi bagi sulitnya pelaksanaan kegiatan pelatihan KSN di sekolah di masa pandemi Covid-19. Metode yang digunakan diantaranya adalah ceramah, diskusi, dan latihan soal. Hasil kegiatan ini, pemateri memberikan teknik-teknik dalam menyelesaikan soal-soal KSN diantaranya adalah mencari pola, menggunakan variabel, melangkah mundur, dan menggunakan ilustrasi. Dari kegiatan ini, panitia mengidentifikasi 10 dari 74 orang siswa yang berbakat dan merekomendasikan ke pihak sekolah untuk dibina lebih lanjut untuk mengikuti KSN Bidang Matematika. Hal ini sesuai dengan ketentuan KSN tahun 2021, yaitu setiap sekolah diwakili maksimal 9 (sembilan) peserta. Setiap peserta hanya diperbolehkan mengikuti 1 (satu) bidang lomba dan setiap bidang lomba maksimal 3 (tiga) peserta. Selanjutnya, kegiatan ini dapat dimanfaatkan dan dikembangkan oleh para guru matematika di sekolah tersebut untuk melakukan pembinaan kepada para siswa di dalam menghadapi KSN bidang Matematika. Pihak SMP IT Qardhan Hasana mengharapkan agar kegiatan ini dapat dilaksanakan secara rutin setiap tahun dalam bentuk kerja sama antara pihak sekolah dengan pihak Program Studi Matematika FMIPA ULM. This Community Service activity is in the form of online training. It aims to share knowledge about technical implementation, syllabus, and tips and tricks in solving problems in the National Science Competition (NCS) for junior high school mathematics. This activity was carried out for two days in July 2021. Participants in this activity were mathematics teachers and students at SMP IT Qardhan Hasana, Banjarbaru City, Province of South Kalimantan, which consisted of 3 mathematics teachers and 74 students. This training ran smoothly and could be a solution to the difficulty of implementing KSN training activities in schools during the Covid-19 pandemic. The methods used include lectures, discussions, and practice questions. The results of this activity show that the presenters provide techniques for solving KSN questions, including looking for patterns, using variables, stepping back, and using illustrations. The committee identified 10 out of 74 gifted students from this activity and recommended the school be further nurtured to participate in KSN in Mathematics. This is following the provisions of the 2021 KSN, which is that each school is represented by a maximum of 9 (nine) participants. Each participant is only allowed to participate in 1 (one) competition field, and each competition field is a maximum of 3 (three) participants. Furthermore, this activity can be utilized and developed by mathematics teachers at the school to guide students in facing KSN in the field of Mathematics. The SMP IT Qardhan Hasana hopes that this activity can be carried out regularly every year in collaboration between the school and the Study Program of Mathematics, FMIPA ULM. 
MODEL MATEMATIKA PADA PENYEBARAN MALARIA DI KALIMANTAN SELATAN Rahmi Hidayati; Faisal Faisal; Yuni Yulida
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 11, No 2 (2017): JURNAL EPSILON VOLUME 11 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (331.352 KB) | DOI: 10.20527/epsilon.v11i2.119

Abstract

Malaria adalah penyakit menular yang disebabkan plasmodium melalui gigitan nyamuk Anopheles betina. Tujuan dari penelitian ini adalah untuk menjelaskan terbentuknya model penyebaran malaria di Kalimantan Selatan, menganalisis dan menginterpretasi tingkat infeksinya. Penelitian ini dilaksanakan dengan mencari data kasus malaria kemudian mengkaji model SIR, menentukan asumsi yang diperlukan, membentuk model SIR, menentukan kestabilan model dan menganalisis tingkat infeksi malaria dengan model matematika. Model penyebaran malaria di Kalimantan Selatan merupakan sistem persamaan diferensial nonlinier. Pada model ini diperoleh dua titik ekuilibrium yaitu bebas penyakit dan titik ekulibrium endemik. Titik ekuilibrium bebas penyakit stabil asimtotik. Setelah dianalisis tingkat infeksi di Kalimantan Selatan untuk setiap kabupaten menggunakan model tersebut, diperoleh tingkat infeksi malaria paling rendah terjadi di Banjarmasin dan paling tinggi terjadi di Kabupaten Balangan. Infeksi malaria mengalami penurunan setiap tahunnya sehingga infeksinya akan hilang seiring berjalannya waktu hal ini menjelaskan bahwa Kalimantan Selatan akan bebas dari infeksi malaria.Kata Kunci : malaria, model SIR, titik ekuibrium, kestabilan, bilangan reproduksi dasar
APLIKASI PERSAMAAN GELOMBANG UNTUK MENENTUKAN KARAKTERISTIK GELOMBANG SENAR GITAR YANG DIPETIK Yuni Yulida; Haidir Ahsana; Muhammad Mahfuzh Shiddiq; Muhammad Ahsar Karim
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 15(2), 2021
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (746.422 KB) | DOI: 10.20527/epsilon.v15i2.4735

Abstract

Partial differential equations are often used to explain physical phenomena, one of which is the wave equation. One application of the wave equation is in plucked strings. This study describes the formation of a wave equation from guitar strings, determines the solution to the wave equation by using the variable separation method and certain boundary conditions and initial conditions, determines the amplitude of the wave, and simulates the movement of the wave based on the initial position of the plucked string. The result obtained is the wave equation of the guitar strings. When the string is plucked, the string will vibrate and produce a wave that can be formulated as a wave equation in the form of a homogeneous second order partial differential equation. The solution to this equation is in the form of a series. If given the initial conditions of plucking in the form of a function, then the amplitude of the wave is obtained. Simulations are given to see the movement of the amplitude and wave on the strings through three cases of the initial position of plucking the strings, namely: less than half, half, and more than half the length of the strings. The behavior of these amplitudes and waves is a characteristic or characteristic of the waves produced from a plucked guitar string
ANALISIS MODEL PREDATOR-PREY TERHADAP EFEK PERPINDAHAN PREDASI PADA SPESIES PREY YANG BERJUMLAH BESAR DENGAN ADANYA PERTAHANAN KELOMPOK Mursyidah Pratiwi; Yuni Yulida; Faisal Faisal
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 11, No 2 (2017): JURNAL EPSILON VOLUME 11 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (199.102 KB) | DOI: 10.20527/epsilon.v11i2.121

Abstract

Model interaksi predasi merupakan model predator prey, dengan spesies predator berinteraksi dengan spesies prey dalam peristiwa makan memakan, dengan kondisi satu spesies populasi predator memangsa satu spesies populasi prey di dua habitat yang berbeda. Dua habitat yang berbeda di sini artinya populasi prey memiliki 2 tempat hidup (habitat), misalnya lokasi 1 dan lokasi 2. Prey mampu bermigrasi diantara dua habitat yang berbeda tersebut, karena suatu kondisi seperti perubahan musim sehingga predator diperbolehkan untuk memilih memangsa prey di habitat yang satu ataupun yang lain, tetapi spesies prey di masing-masing habitat memiliki kemampuan pertahanan kelompok. Pertahanan kelompok prey akan lebih efektif jika jumlah populasinya besar, sehingga predator akan tertarik terhadap habitat dimana spesies prey berjumlah sedikit. Berdasarkan keadaan tersebut, artikel ini akan menjelaskan kembali dalam bentuk model matematika, menentukan kestabilan titik ekuilibrium pada model dan menganalisa terjadinya Bifurkasi Hopf. Hasil yang diperoleh pada model efek perpindahan predasi memiliki 2 titik ekuilibrium salah satu diantaranya mengalami Bifurkasi Hopf.Kata kunci: Predator-prey, titik ekuilibrium, kestabilan ,bifurkasi hopf
HUBUNGAN ANTARA TRANSFORMASI LAPLACE DENGAN TRANSFORMASI ELZAKI Arie Wijaya; Yuni Yulida; Faisal Faisal
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 9, No 1 (2015): JURNAL EPSILON VOLUME 9 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (204.153 KB) | DOI: 10.20527/epsilon.v9i1.4

Abstract

Laplace transform is a transformation method used to solve differential equations. The Laplace transform was first introduced by Pierre Simon Marquas De Laplace, a French mathematician and a professor in Paris. In addition to the Laplace transform, there is also a transformation of the Elzaki transformation which is a special transformation of the Laplace transform. The Elzaki transformation was introduced by Tarig M. Elzaki to find a solution of ordinary differential equations. Generally these two transformations are used to solve linear differential equations, in the transformation process using integral with a range from 0 to ∞. Unlike Elzaki's transformation, the Laplace transform does not have integral integral operators with ???????? variables. The purpose of this research is to find the relationship between Laplace transformation with Elzaki transformation. The result of this research indicates that Elzaki's transformation of a function ???????? (????????) has a relationship with Laplace transformation ie ???????? (????????) = ????????????????????1???????????? while for Laplace transformation ???? (????????) = ???????????? ????1???????????? with ???????? (????????) and ???? (????????) are the Elzaki and Laplace transforms of ???????? (????????), respectively. Based on the above relationship we can obtain the Elzaki transformation properties corresponding to the Laplace transform.