Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Jurnal Transformatika

Pattern Recognition of Human Face With Photos Using KNN Algorithm Kurniadi, Dedy; Sugiyono, Andre; Wardaya, Linggar Alfithna
Jurnal Transformatika Vol. 19 No. 1 (2021): July 2021
Publisher : Jurusan Teknologi Informasi Universitas Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26623/transformatika.v19i1.3581

Abstract

A Facial photos in today's era are widely used as a media for identity recognition, but not many computer applications provide identity recognition of face photos that contain the names of the photo owners, to make an a prototype the sistems use a KNN algorithm, this algorithm work is by classifying the closest object and grouping it on predetermined objects. In this paper, the object is a face photo where the KNN algorithm will be used to classify the facial patterns contained in the photo. The stages in pattern recognition, starting from preprocessing, feature extraction and then classification. In addition to using the KNN algorithm for data classification, photo of faces will be detected and stored the T-Zone area and frontal face. In this paper 11 images used for data testing and the accuracy will be calculated using a recognition algorithm. The results of this paper are a facial recognition program using python that can display faces with a validity level of 82%.
Model Integer Programming untuk penugasan pekerjaan dengan waktu kedatangan dan keberangkatan yang berbeda Sugiyono, Andre; Kurniadi, Dedy
Jurnal Transformatika Vol. 20 No. 2 (2023): January 2023
Publisher : Jurusan Teknologi Informasi Universitas Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26623/transformatika.v20i2.5911

Abstract

Penelitian  ini membahas masalah alokasi peti kemas ke lokasi galangan terminal kapal dimana peti kemas memiliki waktu kedatangan dan keberangkatan yang berbeda untuk meminimalkan total biaya penanganan peti kemas. Diasumsikan bahwa jika lokasi galangan yang dipilih lebih dekat ke titik dimana peti kemas diturunkan dari kapal, biaya keseluruhan akan berkurang. Masalah ini dapat didefinisikan sebagai masalah alokasi mesin pekerjaan di mana biaya pemrosesan pekerjaan pada setiap mesin berbeda tetapi tidak tergantung pada waktu pemrosesan dan pekerjaan yang tidak dapat diakhiri memiliki waktu kedatangan dan keberangkatan yang berbeda. Masalah ini dirumuskan dalam solusi eksak sebagai model pemrograman integer campuran. Hasil komputasi menunjukkan bahwa heuristik ketiga yang diusulkan efisien dalam memecahkan masalah lokasi dalam biaya yang berbeda, jumlah pekerjaan, dan waktu komputasi.
Pengelompokkan Data Akademik Menggunakan Algoritma K-Means Pada Data Akademik Unissula Kurniadi, Dedy; Sugiyono, Andre
Jurnal Transformatika Vol. 18 No. 1 (2020): July 2020
Publisher : Jurusan Teknologi Informasi Universitas Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26623/transformatika.v18i1.2277

Abstract

A Higher education in the digital era as it is now common to use IT technology (Information Technology) in supporting their daily activities, but the use of IT raises a problem that is serious enough if there is no support and no further management this is only produce a data noise , Sultan Agung Islamic University (Unissula) has implemented an IT-based academic information system, in use of this information systems by time this systems produce a lot of data in the unissula academic database and this data is monotonous data and not clustered or also called data noise data that overlap without any benefit and information further in it, the purpose of this study is to solve the problem of these data into student performance data based on the GPA from semester 1 to semester 4 and make it to be a best data to support an alternative decision by the leader, this study uses the method of datamining and k-means algorithms, k-means algorithm is very good to be used as a solution for problems related to clustering, k-means algorithm is an algorithm that is unsupervised and the data can be adjusted by its self according to its class, the results of this study are a decision support system for grouping academic data in the form of dashboard information systems.