Claim Missing Document
Check
Articles

Found 27 Documents
Search

Rancang Bangun Sistem Informasi dan Pengolahan Data Kelahiran, Kematian, Datang, dan Pindah di Kantor Kelurahan Sekaran Kecamatan Gunungpati Kota Semarang Sari, Rini Kartiko; Sunardiyo, Said; Putri, Riana Defi Mahadji
Edu Komputika Journal Vol 3 No 2 (2016): Edu Komputika Journal
Publisher : Jurusan Teknik Elektro Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/edukomputika.v3i2.20516

Abstract

This research aims to design, develop, and apply the information systems and data processing of birth, death, come, and have now moved in the Village Office Gunungpati District of Semarang. The method used in this study is a Rapid Application Development (RAD), which has a cycle of planning requirements, software design, inplementasi, and testing. The testing phase of this research is done with black-box testing and user trials. Black-box testing focuses on functional requirements, while the user test carried out by village officials in the office klurahan sekaran. The tools used in this study is a sheet instruments. From the data analysis, the result is that village officials at the Village Office have now proved that Information Systems birth, death, come, and moved very easy to use and can help the task of village officials in providing services to the community have now. This is indicated by the results of testing black-box testing and test users who say that the system is fit for use with both and facilitate service to the community. Suggestions based on the information system of birth, death, come, and move that has been so is that these letters can be printed exactly to the letter from the Office of the City Government of Semarang.
Mitigasi Blackout Akibat Overload melalui Implementasi Prioritas Beban dalam Skema Overload Shedding RISQI, FATKHIYATI; SUNARDIYO, SAID
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 12, No 3: Published July 2024
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v12i3.612

Abstract

ABSTRAKGangguan kontingensi sistem tenaga listrik dapat menyebabkan overload yang berpotensi memicu blackout masal jika tidak ditangani dengan tepat. Penelitian ini mengusulkan desain skema overload shedding untuk Subsistem Pedan 3,4 yang mempertimbangkan prioritas beban. Simulasi dilakukan pada tiga skenario gangguan kontingensi N-1 dan N-1-1 meliputi trip pada Interbus Transformer (IBT), PLTU Pacitan 1, serta kombinasi keduanya. Hasil simulasi menunjukkan bahwa pada kasus gangguan IBT dan kombinasi IBT-PLTU, skema overload shedding yang diusulkan berhasil mencegah blackout dengan melakukan pelepasan beban bertahap sesuai prioritas. Namun, pada kasus trip PLTU saja, tidak diperlukan pelepasan beban karena pembebanan IBT masih aman. Dengan demikian skema overload shedding ini terbukti efektif dalam menjaga keandalan sistem tenaga listrik saat menghadapi gangguan kontingensi, mencegah blackout masal dan meminimalkan dampak pada area non-kritis.Kata kunci: load shedding, overload, kontingensi, prioritas beban, DIgSILENT ABSTRACTPower system contingency disturbances can cause overloads that have the potential to trigger mass blackouts if not handled appropriately. This study proposes an overload shedding scheme design for Pedan 3,4 Subsystem that considers load prioritization. Simulations were conducted on three N-1 and N-1-1 contingency fault scenarios including trips to the Interbus Transformer (IBT), Pacitan 1 PLTU, and a combination of both. The simulation results show that in the case of IBT fault and IBT-PLTU combination, the proposed overload shedding scheme successfully prevents blackout by performing gradual load shedding according to priority. However, in the case of PLTU trip only, no load shedding is required because the IBT loading is still safe. Thus this overload shedding scheme is proven effective in maintaining power system reliability when facing contingency disturbances, preventing mass blackouts and minimizing the impact on non-critical areas.Keywords: load shedding, overload, contingency, load priority, DIgSILENT
Analisis Arsitektur Jaringan Syaraf Tiruan-Multilayer Perceptron untuk Efektivitas Estimasi Beban Energi Listrik PT. PLN (Persero) UP3 Salatiga SAPUTRA, RONI; SUNARDIYO, SAID; NUGROHO, ANAN; SUBIYANTO, SUBIYANTO
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 11, No 3: Published July 2023
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v11i3.664

Abstract

ABSTRAKPT PLN (Persero) UP3 Salatiga merupakan perusahaan penyedia energi listrik enam kabupaten di Jawa Tengah. Agar energi listrik yang mengalir ke pelanggan handal dan ekonomis, penyesuaian antara supply dan demand penting untuk dilakukan. Hal ini bisa dilakukan dengan perencanaan operasi sistem tenaga listrik dalam bentuk estimasi beban energi listrik. Pada penelitian ini, estimasi dilakukan dengan jaringan syaraf tiruan-multilayer perceptron. Sejumlah variasi jumlah layer dan node pada arsitektur perceptron diuji-cobakan untuk mendapatkan performa estimasi yang terbaik. Dari penelitian ini, diperoleh arsitektur terbaik yaitu TRAINGDA 4 hidden layer dengan 20 node hidden layer, dengan nilai MAPE sebesar 2.79% tahap training, serta nilai MAPE sebesar 3.24% tahap testing. Hasil ini mengindikasikan bahwa metode jaringan syaraf tiruan-multilayer perceptron lebih akurat sebagai estimator beban energi listrik PT PLN (Persero) UP3 Salatiga.Kata kunci: estimasi, estimasi beban, energi listrik, multilayer perceptron ABSTRACTPT PLN (Persero) UP3 Salatiga is an electricity provider company for 6 districts in Central Java. To ensure reliable and economical electricity supply to customers, adjustment between supply and demand is important to be conducted. This can be achieved through planning of power system operation in the form of electricity load estimation. In this study, estimation was performed using artificial neural network-multilayer perceptron. Several variations of the number of layers and nodes in the perceptron architecture were tested to obtain the best estimation performance. From this study, the best architecture was obtained with TRAINGDA 4 hidden layers and 20 hidden layer nodes, resulting in MAPE value of 2.79% in the training phase and 3.24% in the testing phase. These results indicate that artificial neural network-multilayer perceptron method is more accurate as an estimator of electricity load for PT PLN (Persero) UP3 Salatiga.Keywords: estimation, load estimation, electrical energy, multilayer perceptron
Prakiraan Kebutuhan Energi Listrik Dengan Jaringan Saraf Tiruan (Artificial Neural Network) Metode Backpropagation Tahun 2020-2025 Setyowati, Diah; Sunardiyo, Said
Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems) Vol. 14 No. 1 (2020)
Publisher : Faculty of Engineering, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jeeccis.v14i1.604

Abstract

Kebutuhan energi listrik merupakan salah satu hal utama yang diprioritaskan oleh penyedia listrik. Perlunya dilalukan perencanaan terhadap pemenuhan kebutuhan energi listrik oleh penyedia listrik setiap tahunnya. Penelitian dilakukan untuk memprediksi kebutuhan energi listrik PT PLN (Persero) UP3 Semarang tahun 2020-2025 dengan mengembangkan suatu model Jaringan Saraf Tiruan metode Backpropagation menggunakan software Matlab. Beberapa variabel yang digunakan yaitu jumlah penduduk, jumlah pelanggan, PDRB, daya tersambung, beban puncak dan total produksi energi listrik. Variabel tersebut merupakan beberapa faktor yang mempengaruhi peningkatan  kebutuhan energi listrik. Hasil penelitian menghasilkan Mean Absolute Percentage Error (MAPE) sebesar 0,4% dan Growth of Total % (GOT %) sebesar 2,7% setiap tahunnya.
Analysis of the Readiness of Vocational School Teachers for the Expertise Program  Electrical Engineering in Developing Learning Based on Local Potential Supraptono, Eko; Sonhaji, Sonhaji; Kurniawan, Galang Wahid; Sunardiyo, Said; Irfan, Mohamad; Hidayattullah, Ardhana Luthfi
International Journal of Active Learning Vol. 10 No. 2 (2025): October 2025
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ijal.v10i2.34325

Abstract

This study aims to analyze the readiness of teachers of the Electrical Engineering Expertise Program at SMK Negeri Semarang City in developing learning based on local potential in the digital era. Teacher readiness is reviewed through aspects of pedagogic, professional, digital, teaching experience, and training or certification. Local potential-based learning is understood as integrating regional resources and local wisdom into the curriculum through contextual methods with the support of digital technology. The research method uses a mixed approach. Quantitative data is obtained through questionnaires to measure teachers' readiness levels, while qualitative data is collected through interviews, classroom observations, and analysis of curriculum documents. Quantitative data analysis was carried out with descriptive statistics and linear regression to identify relationships between variables, while qualitative data were analyzed thematically to strengthen quantitative findings. The study's results are expected to reveal the supporting and inhibiting factors in implementing local potential-based learning, such as the limitations of digital infrastructure, the lack of relevant training, and education policies that are not optimal to encourage technology integration. Theoretically, this research contributes to enriching the study of teacher readiness by placing local potential as the basis for vocational learning innovation. Practically, the research results are expected to be a reference for education stakeholders to design strategies for increasing teacher capacity and policies more adaptive to technological developments and local industrial needs.
Implementasi Multilayer Perceptron Artificial Neural Network untuk Prediksi Konsumsi Energi Listrik PT PLN (Persero) UP3 Salatiga Saputra, Roni; Sunardiyo, Said; Nugroho, Anan; Subiyanto, Subiyanto
Elektrika Vol. 15 No. 2 (2023): October 2023
Publisher : Universitas Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26623/elektrika.v15i2.6411

Abstract

Electricity is energy that flows through cable networks and has become an important part of the progress of human civilization in various fields. The high demand for electrical energy for consumers requires providers of electrical energy to provide a reliable but economical supply of electrical energy. Therefore, strategies and methods are needed to adjust the supply and demand of electrical energy. This can be achieved by carrying out proper and appropriate operational planning. One of the important steps in planning the operation of an electric power system is predicting the demand for electrical energy. However, in the existing research there are still deficiencies in the form of a high error rate. The purpose of this study was to determine the implementation of the multilayer perceptron artificial neural network to predict electricity in 2022-2026 at PT PLN (Persero) UP3 Salatiga. The study used time series data on electricity consumption for the previous 5 years. Based on the research that has been done, the best network variation is TRAINGDA 4 hidden layer with 20 hidden layer nodes, this network model at the training stage produces output with MAD of 2,624,072 kWh and MAPE of 2.79%, and at the stage testing produced an output with MAD of 3,728,386 kWh and MAPE of 3.24%. Keywords: Multilayer perceptron artificial neral network, Forecasting, Electricity consumption.ABSTRAK  Listrik merupakan energi yang mengalir melalui jaringan kabel serta sudah menjadi bagian yang penting dalam kemajuan peradaban manusia di berbagai bidang. Tingginya kebutuhan energi listrik pada konsumen mengharuskan penyedia energi listrik menyediakan suplai energi listrik yang handal tetapi tetap ekonomis. Oleh karena itu, diperlukan strategi dan metode untuk penyesuaian antara supplay dan demand energi listrik. Hal tersebut dapat dicapai dengan melakukan perencanaan operasi yang baik dan tepat, salah satu langkah perencanaan operasi sistem tenaga listrik yang penting yaitu prediksi kebutuhan energi listrik. Namun dalam penelitian yang ada masih terdapat kekurangan berupa tingkat kesalahan yang masih cukup tinggi. Tujuan dari penelitian ini adalah untuk mengetahui implementasi multilayer perceptron artificial neural network untuk melakukan prediksi listrik pada tahun 2022-2026 pada PT PLN (Persero) UP3 Salatiga. Penelitian menggunakan data time series konsumsi energi listrik 5 tahun sebelumnya. Berdasarkan penelitian yang telah dilakukan didapatkan variasi jaringan terbaik yaitu TRAINGDA 4 hidden layer dengan 20 node hidden layer, model jaringan ini pada tahap training menghasilkan output dengan nilai MAD sebesar 2,624,072 kWh dan MAPE sebesar 2.79%, serta pada tahap testing menghasilkan output dengan nilai MAD sebesar 3,728,386 kWh dan MAPE sebesar 3.24%.
Sign Language Detection Application to Facilitate Communication for Speech and Hearing Impaired Individuals Based on Computer Vision Technology Using Inception Resnetv2 Arfriandi, Arief; Prabowo, Yoga Agung; Najuda, Moh Dafi; Puspita, Tri Anggi Ratna; Virnanda, Shakira Wahyu; Sunardiyo, Said
Rekayasa Vol. 20 No. 2 (2022)
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/rekayasa.v20i2.19433

Abstract

Communication is a fundamental human need, yet not everyone possesses perfect communication abilities. People Communication is a fundamental human need, yet individuals with speech and hearing impairments face challenges due to the limited understanding of sign language among the general public. This study applies Artificial Intelligence and Computer Vision to enhance communication accessibility by detecting hand gestures and converting them into text. The lack of real-time sign language translation remains a barrier for individuals with disabilities. Existing systems often struggle with accuracy and device compatibility. This research develops and evaluates HARDISC, an Android-based application that recognizes letters A–Z through hand movement detection using a camera. The goal is to provide an effective and inclusive communication tool for the speech and hearing impaired. HARDISC utilizes Transfer Learning with Inception ResNetV2 and VGG16 for gesture classification. Image processing enables the camera to detect and translate hand movements into text. Model evaluation was based on accuracy, loss values, and device compatibility. Results show Inception ResNetV2 achieved 98.98% accuracy with a 0.0417 loss value, while VGG16 recorded 99.40% accuracy with a 0.0146 loss value, demonstrating high performance. HARDISC is compatible with Android KitKat 4 to Android 12, ensuring accessibility. This application provides an innovative, real-time solution to bridge communication gaps for individuals with speech and hearing impairments, improving their interaction with the general public.