p-Index From 2021 - 2026
6.093
P-Index
This Author published in this journals
All Journal IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Jurnal Akuntansi Indonesia Jurnal Simetris Prosiding SNATIF Jurnal Pseudocode E-Dimas: Jurnal Pengabdian kepada Masyarakat Sistemasi: Jurnal Sistem Informasi Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Jurnal SOLMA Jurnal Sisfokom (Sistem Informasi dan Komputer) Jurnal DISPROTEK International Journal of Elementary Education EDUMATIC: Jurnal Pendidikan Informatika Jurnal SITECH : Sistem Informasi dan Teknologi Abdimas Toddopuli: Jurnal Pengabdian Pada Masyarakat Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) Jurnal Teknik Informatika (JUTIF) Journal of Information Technology Ampera Indonesian Journal of Technology, Informatics and Science (IJTIS) Journal of Software Engineering Ampera Jurnal UNITEK Devotion: Journal of Research and Community Service Jurnal Pengabdian Masyarakat (ABDIRA) Indonesian Journal of Networking and Security - IJNS SPEED - Sentra Penelitian Engineering dan Edukasi Muria Jurnal Layanan Masyarakat Jurnal Nasional Teknik Elektro dan Teknologi Informasi Jurnal Locus Penelitian dan Pengabdian Jurnal Ilmiah Sistem Informasi dan Ilmu Komputer IC Tech: Majalah Ilmiah Jurnal Sistem Informasi dan Manajemen Sasambo: Jurnal Abdimas (Journal of Community Service) International Journal of Artificial Intelligence and Science IC Tech: Majalah Ilmiah
Claim Missing Document
Check
Articles

Implementasi Sistem Informasi Pelayanan Pemasangan Listrik ULP PLN Kudus Kota Fikri Hamdhan; Agus Triyanto, Wiwit
Abdimas Toddopuli: Jurnal Pengabdian Pada Masyarakat Vol. 7 No. 1 (2025): Volume 7, No 1, Desember 2025
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/atjpm.v7i1.7381

Abstract

PLN ULP Kudus Kota merupakan salah satu unit dari Perusahaan Negara (BUMN) yang bergerak di bidang pelayanan pelanggan listrik, melayani kebutuhan listrik untuk sektor rumah tangga maupun industri. Meskipun saat ini pelanggan telah dapat memanfaatkan aplikasi PLN Mobile untuk menyampaikan keluhan, masih banyak pelanggan yang datang langsung ke kantor untuk mengajukan laporan terkait gangguan atau permasalahan kelistrikan di tempat tinggal mereka. Penggunaan aplikasi PLN Mobile sering kali mengalami kendala teknis, seperti error saat proses pengaduan, ketidakcocokan perangkat lunak atau perangkat keras, serta masalah koneksi internet yang tidak stabil saat aplikasi dijalankan.Untuk mengatasi permasalahan tersebut, penelitian ini melakukan pengembangan sistem informasi berbasis web yang dirancang agar pelanggan dapat menyampaikan keluhan, permintaan pemasangan baru, perubahan daya, serta permohonan migrasi dengan lebih mudah dan efisien. Hasil dari pengembangan ini berupa sistem informasi layanan instalasi listrik pada PT. PLN ULP Kudus Kota, yang berfungsi untuk mempermudah pelanggan dalam melaporkan dan memantau permasalahan kelistrikan di lingkungan tempat tinggal mereka. Instalasi listrik pada PT. PLN ULP Kudus Kota, yang berfungsi untuk mempermudah pelanggan dalam melaporkan dan memantau permasalahan kelistrikan di lingkungan tempat tinggal mereka.
Sistem Presensi Karyawan Rokok Pada Pr-Oemega Menggunakan Qr Code Berbasis Website Kevin Putra Adama; Wiwit Agus Triyanto
Abdimas Toddopuli: Jurnal Pengabdian Pada Masyarakat Vol. 7 No. 2 (2026): Volume 7, No 2, Juni 2026
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/atjpm.v7i2.7692

Abstract

PR-OEMEGA merupakan perusahaan yang bergerak di bidang industri rokok yang memiliki banyak karyawan. Saat ini, sistem presensi yang berjalan masih menggunakan metode konvensional (manual), yang memiliki berbagai kelemahan seperti antrean saat jam masuk dan pulang, risiko manipulasi data (titip absen), serta proses rekapitulasi laporan bulanan yang memakan waktu lama dan rentan human error. Penelitian ini bertujuan untuk merancang dan membangun sistem informasi presensi karyawan menggunakan teknologi Quick Response (QR) Code berbasis website. Metode pengembangan sistem yang digunakan adalah System Development Life Cycle (SDLC) model Waterfall, yang meliputi tahapan analisis kebutuhan, desain sistem, implementasi, dan pengujian. Sistem ini dirancang menggunakan bahasa pemrograman PHP dan database MySQL. Hasil dari penelitian ini adalah sebuah aplikasi presensi berbasis web yang memungkinkan karyawan melakukan absensi dengan memindai QR Code melalui smartphone, serta memudahkan bagian administrasi dalam memantau kehadiran dan mengelola laporan penggajian secara real-time, akurat, dan efisien
Image Forensics Analysis of the Authenticity of Digital Payment Evidence using the K-Nearest Neighbor Algorithm Agusta, Feriyan; Setiaji, Pratomo; Triyanto, Wiwit Agus
Sistemasi: Jurnal Sistem Informasi Vol 15, No 1 (2026): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v15i1.5728

Abstract

The rapid growth of digital transactions has also increased the risk of digital payment evidence forgery, such as screenshot manipulation or digital image editing. This study aims to develop an automated authenticity validation system for digital payment evidence by integrating Image Processing, Image Forensics, and Optical Character Recognition (OCR) technologies. The processing pipeline begins with image preprocessing, followed by forensic feature extraction and OCR-based text analysis, which are then classified using the K-Nearest Neighbor (KNN) algorithm. This study evaluates 15 experimental scenarios based on combinations of training and testing data ratios (90:10, 80:20, 70:30, 60:40, and 50:50) and random state values (42, 32, and 22). Model performance is assessed using accuracy, precision, recall, and F1-score metrics across a range of k values from 1 to 15. The results indicate that the optimal performance is achieved at k = 7, with an accuracy of 97.1%. The proposed system is able to efficiently distinguish between authentic and manipulated digital payment evidence. The system is implemented as an Android application that allows users to upload payment evidence via the device camera or gallery, after which the system automatically analyzes its authenticity. The findings demonstrate that the integration of image forensic techniques and the K-Nearest Neighbor (KNN) algorithm effectively detects indications of manipulation in digital payment evidence and enhances the efficiency of the verification process within the digital financial services ecosystem.
Implementation of Image Processing in Scanning KTP Data using Optical Character Recognition (OCR) Hanafi, Bachtiar; Stiaji, Pratomo; Triyanto, Wiwit Agus
Sistemasi: Jurnal Sistem Informasi Vol 15, No 1 (2026): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v15i1.5856

Abstract

The Indonesian National Identity Card (Kartu Tanda Penduduk or KTP) serves as the primary identification document for Indonesian citizens in various administrative processes across both the public and private sectors. However, manual data entry of KTP information is still commonly practiced, leading to potential input errors, delays, and inefficiencies. This study aims to develop an Android-based application capable of automatically scanning and extracting KTP data using Optical Character Recognition (OCR) enhanced with a Convolutional Neural Network (CNN). The CNN is applied during the image preprocessing stage to improve text area segmentation and detection accuracy prior to the OCR process. The application is developed using Python, Dart, and PHP, and is designed with a user-friendly interface. Extracted data—including name, national identification number (NIK), place and date of birth, and address—are stored in a MySQL database through web API integration. The research adopts a software engineering approach comprising requirement analysis, system design, implementation, and testing. Experimental results indicate that the integration of CNN into the OCR system improves character recognition accuracy up to 86.7%, particularly for low-quality or noisy images. Therefore, the proposed application is expected to provide an effective solution for faster, more accurate, and more efficient population data digitization.
Co-Authors - Universitas Muria Kudus, Muhammad Arifin - Universitas Muria Kudus, Nanik Susanti A.A. Ketut Agung Cahyawan W Agusta, Feriyan Alif Catur Murti, Alif Catur Amalia, Syifa Anastasya Latubessy Arif Setiawan Diana Laily Fithri Dimyati Utoyo Erlina Nofianti Fajar Nugraha Fakhriyyah, Anis Farid Noor Romadlon Ferianti, Lydya Ayu Fernando Candra Yulianto Fikri Hamdhan Fithri, Diana Layli H. Himawan Hanafi, Bachtiar Hartiningsih Hartiningsih Hasan Basri Hidayatullah, Muhamad Arzak Hutomo Rusdianto Ilyas, Muhamad Dwi Iskandar Iskandar Jamhari Jamhari Jayanti Putri Purwaningrum Kevin Putra Adama Khoiruz Zahro Latifah Nur Ahyani Maula, Ahmad Inzul Mochammad Imron Awalludin Muhammad Arifin Muzakkiy, Muhammad Nandalisa Lisa Fa’ati Rahmawati Nanik Susanti Nia Zuliyana, Nia Nisa, Nila Akhidatul Noor Latifah Nurhaliza, Aulia Nurhaliza, Maulin Pambudi, Satrio Pramita, Alvina Gusti Pratomo Setiaji Pratomo Setiaji Pratomo Setiaji Putri, Rizka Ferbriliana R Rhoedy Setiawan Ramandani, Fitri Ratna Wijayani, Dianing Retno Tri Handayani Riawan Yudi Purwoko Ridwan, Muhammad Eldo Rizal Naufal Farras Arkanda Selamet , Ahmad Alif Candra Semit, Danial Setiawan, Faris Apri Slamet Kusmanto, Agung Sonia Shekha Anggriani Sri Septiana, Deyana Fitri Stiaji, Pratomo Suku Rahayu, Sri Intan Supriyono Supriyono Syafiul Muzid Sya’diah, Ary Kania Tamami, Ghufron Teguh Prasetyo Vincent Suhartono Wahyu Wibowo, Angga Wardhani, Indah Kusuma Widodo, Wahyu Kurniawan Ade Nur Yudie Irawan Yuniarsi Rahayu Zahra, Fatimah Az Zuliyati Zuliyati Zuliyati Zuliyati