Claim Missing Document
Check
Articles

Found 23 Documents
Search

SACCHARIFICATION OF NATIVE CASSAVA STARCH AT HIGH DRY SOLIDS IN AN ENZYMATIC MEMBRANE REACTOR I Nyoman Widiasa; I Gede Wenten
Reaktor Volume 12, Nomor 3, Juni 2009
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (217.143 KB) | DOI: 10.14710/reaktor.12.3.129 – 136

Abstract

This study is aimed to develop a novel process scheme for hydrolysis of native cassava starch at high dry solids using an enzymatic membrane reactor (EMR). Firstly, liquefied cassava starch having solids content up to 50% by weight was prepared by three stage liquefactions in a conventional equipment using a commercially available heat stable a-amylase (Termamyl 120L). The liquefied cassava starch was further saccharified in an EMR using glucoamylase (AMG E). By using the developed process scheme, a highly clear hydrolysate with dextrose equivalent (DE) approximately 97 could be produced, provided the increase of solution viscosity during the liquefaction was precisely controlled. The excessive space time could result in reduction in conversion degree of starch. Moreover, a residence time distribution study confirmed that the EMR could be modelled as a simple continuous stirred tank reactor (CSTR). Using Lineweaver-Burk analysis, the apparent Michaelis-Menten constant (Km) and glucose production rate constant (k2) were 552 (g/l) and 4.04 (min-1), respectively. Application of simple CSTR model with those kinetic parameters was quietly appropriate to predict the reactor’s performance at low space time.
Optimizing Food Processing Efficiency: The Role of Forward Osmosis in Concentration Julian, Helen; Lestari, Puji; Wenten, I Gede; Khoiruddin, K
Journal of Engineering and Technological Sciences Vol. 57 No. 2 (2025): Vol. 57 No. 2 (2025): April
Publisher : Directorate for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2025.57.2.6

Abstract

This review comprehensively explores the application of Forward Osmosis technology in the food processing industry, focusing on its role in concentration processes. Amidst growing concerns over water scarcity, energy consumption, and environmental impact, Forward Osmosis emerges as a sustainable alternative to traditional methods, offering lower energy requirements and reduced environmental footprint. The paper delves into the theoretical foundations of Forward Osmosis, examining the osmotic process and the dynamics of semi-permeable membranes. It further investigates the technological implementations of Forward Osmosis in food processing, showcasing successful case studies and highlighting the technology performance advantages compared to other methods. Despite its potential, Forward Osmosis faces technical challenges, including membrane fouling and the need for efficient draw solution recovery mechanisms. Recent innovations in membrane and draw solution development are discussed, offering solutions to these hurdles and paving the way for more effective Forward Osmosis applications. The review also projects future directions and research needs to overcome existing limitations and fully harness Forward Osmosis capabilities. Through a critical analysis of current literature, this paper underscores Forward Osmosis transformative potential in making food processing more sustainable and efficient.
Heterogeneous Polypropylene-Based Cation-Exchange Membrane Modified by Functionalized Zinc Oxide Particles for Vanadium Redox Flow Battery Khoiruddin, Khoiruddin; Firmansyah, Rizky W.; Yulanda, Nanda; Wardani, Anita K.; Wenten, I Gede
Reaktor Volume 24 No.2 August 2024
Publisher : Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/reaktor.24.2.58-67

Abstract

This work presents the synthesis and characterization of heterogeneous cation-exchange membranes based on polypropylene (PP) and cation-exchange resin (IER) powder, developed via melt spinning. The membranes were modified with zinc oxide (ZnO) nanoparticles functionalized with polydopamine (PDA) to enhance their electrochemical properties. The effects of varying IER content and ZnO/PDA loading on key membrane properties, including ion-exchange capacity (IEC), water uptake (WU), water contact angle (WCA), proton conductivity, water permeability, and vanadium permeability, were systematically investigated. The results demonstrated that increasing IER content improved proton conductivity and IEC, but also increased vanadium permeability. The PP/ZnO-PDA (Z-2.5) membrane, with 2.5%-wt. ZnO/PDA, showed reduced water permeability (0.46 L·m⁻²·h⁻¹·bar⁻¹) and vanadium permeability (5.67 × 10⁻⁵ cm² min⁻¹), while maintaining moderate proton conductivity (13.17 mS/cm). However, increasing ZnO/PDA content beyond 2.5%-wt. led to declines in WU, IEC, and proton conductivity, likely due to nanoparticle aggregation reducing access to ion-exchange sites.