Claim Missing Document
Check
Articles

Found 12 Documents
Search

Telemonitoring Denyut Jantung Dan Suhu Tubuh Terintegrasi Android Smartphone Berbasis Internet of Things (IoT) Rahmat Widadi
Electrician : Jurnal Rekayasa dan Teknologi Elektro Vol. 16 No. 1 (2022)
Publisher : Department of Electrical Engineering, Faculty of Engineering, Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Denyut jantung dan suhu tubuh merupakan parameter kesehatan yang sering digunakan pada manusia. Jumlah kasus kematian akibat penyakit jantung meningkat selama masa pandemi, kurangnya infrastruktur dan layanan telemedika juga menjadi faktor. Penelitian ini bertujuan untuk merancang sistem monitoring terintegrasi smartphone dengan prinsip health from home. Sistem memantau denyut jantung menggunakan pulse heart rate sensor dan suhu tubuh menggunakan DS18B20 temperature sensor. Hasil penelitian didapatkan sistem dapat digunakan sebagai telemonitoring kesehatan dengan nilai akurasi pembacaan denyut jantung pulse heart rate sensor sebesar 98.57 persen dan pembacaan suhu tubuh DS18B20 temperature sensor sebesar 98.55 persen. Hasil pengukuran QoS sistem diperoleh nilai throughput 9.93 Kbit/s, delay 0.25 s, dan packet loss 0 persen.
Rice Classification with K-Nearest Neighbor based on Color Feature Extraction and Invariant Moment Hapsari S, Santika Tri; Widadi, Rahmat; Permatasari, Indah
Sistemasi: Jurnal Sistem Informasi Vol 12, No 3 (2023): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v12i3.2683

Abstract

Rice is the staple food of Indonesians which comes from rice plants. Rice plants often experience crop failure due to disease. Of course this will affect the yield. Therefore, in this era of technological advances, digital images can be used to help farmers classify rice leaf diseases so they can be controlled. One of the classifications uses K-Nearest Neighbor (KNN) which is sourced from learning data information with the closest distance. Research requires color feature extraction and invariant moment methods in order to obtain information on the distinguishing characteristics of an object from other objects. Data comes from the UCI Machine Learning Repository totaling 120 images which are divided into 3 types of bacterial disease leaf blight, brown spot, and leaf smut with each class having 40 images. The color features used by HSV are Hue, Saturation, and Value. Meanwhile, the invariant moment uses the seven features H1 to H7 introduced by Hu. Feature selection is carried out after the feature extraction process to get the highest accuracy value. In addition, variations in the number of neighbors (k) in KNN are also varied from k=1 to k=10. The best accuracy results are obtained from the use of features, namely hue, saturation, value, h2, h3, and h7 and the value of the number of neighbors in KNN k=1 with an accuracy 81.66%.