Claim Missing Document
Check
Articles

Found 18 Documents
Search

HUBUNGAN ANTARA PROGRAM MACAPAT DI RADIO P2SC DENGAN PERILAKU KONATIF PADA WARGA KELURAHAN KEBON KOSONG (Studi pada Warga RT 006/009 Kelurahan Kebon Kosong Jakarta Pusat) Wijaya, Edi
Akrab Juara : Jurnal Ilmu-ilmu Sosial Vol. 4 No. 5 (2019)
Publisher : Yayasan Azam Kemajuan Rantau Anak Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Permasalahan dalam penelitian ini adalah pengaruh era globalisasi terhadap budaya Indonesia. Sebagai komunikasi massa, radio menyukai 'aktor' yang penting bagi penggemar atau pendengar. Pertanyaan penelitian adalah bagaimana hubungan antara program Macapat di Radio P2SC dengan konatif sikap RT 006/009 Kelurahan Kebon Kosong, Jakarta Pusat. Ini adalah metode penelitian kuantitatif dengan studi kasus. Hubungan hipotesis menggunakan metode asosiatif. Hasil penelitian ini adalah korelasi dari variabel X dan Y (r) 0,734, Ha dapat diterima dan Ho tidak dapat diterima. Dan hasil untuk regresi linier sedangkan hasil untuk r square atau koefisien determinasi 0,538 ini berarti hubungan mendengar Program Macapat adalah 53,8% dan 46,2% adalah faktor lain yang tidak termasuk dalam penelitian ini. Untuk penelitian t tabel a = 10%: 2 = 5% (0,05), dan hasilnya adalah 21 - 2 = 19, t hasil dari Program Macapat pada P2SC Radio = 2.198 signifikan 0,000 (alpha) 0,05, dan hasil untuk tabel = 1,734. Hasilnya Ha diterima, Ho tidak diterima.
PENERAPAN SIRKUIT HAMILTON UNTUK MENENTUKAN RUTE TERPENDEK PERJALANAN SALESMAN PT HEALTH WEALTH INTERNATIONAL (HWI) Wijaya, Edi; Vera, Vera
Jurnal TIMES Vol 5 No 1 (2016)
Publisher : STMIK TIME

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (278.691 KB) | DOI: 10.51351/jtm.5.1.2016394

Abstract

Penelitian ini bertujuan untuk menganalisis dan merancang aplikasi rute perjalanan salesman dengan Sirkuit Hamilton pada PT. Health Wealth International yang mencakup pembelian, penjualan, dan rute perjalanan. Metodologi yang digunakan untuk melakukan proses analisis dan perancangan pada penelitian ini adalah metode Breadth First Search (BFS). Tools yang digunakan untuk melakukan analisis dan desain adalah Data Flow Diagram (DFD). Hasil dari penelitian ini adalah Aplikasi Rute Perjalanan dengan Sirkuit Hamilton pada PT Health Wealth International yang terkomputerisasi yang dapat digunakan untuk menyediakan informasi rute perjalanan yang berguna dalam kegiatan pengiriman barang perusahaan.
Aplikasi Prediksi Penentuan Kelancaran Pembayaran Koperasi Dengan Algoritma C5.0 Wijaya, Edi; Tarigan, Feriani Astuti; Michael
Jurnal TIMES Vol 10 No 1 (2021): Jurnal TIMES
Publisher : STMIK TIME

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (354.858 KB) | DOI: 10.51351/jtm.10.1.2021648

Abstract

Koperasi adalah badan usaha atau badan hukum yang anggotanya saling bekerja sama dalam kegiatan ekonomi. Peran utama dari koperasi adalah melakukan proses simpan dan pinjam uang kepada anggota- anggotanya. Pada saat ini banyak koperasi yang mengalami hambatan operasional dikarenakan kondisi pandemi COVID-19 yang dihadapi saat ini membuat bisnis-bisnis tutup dan bankrut sehingga berdampak pada kredit macet yang harus dihadapi koperasi. Kondisi demikian membuat koperasi harus lebih selektif dalam menentukan nasabah-nasabah yang akan mengajukan kredit agar dapat meminimalkan terjadinya kondisi kredit macet. Pada praktiknya, biasanya pihak koperasi akan mengevaluasi kelayakan kredit dari nasabahnya secara konvensional. Proses tersebut tentunya sangat tidak efisien dan efektif dikarenakan apabila jumlah nasabah sangat banyak, maka tentunya memerlukan waktu yang sangat lama dalam melakukan proses evaluasi. Oleh sebab itu pada penelitian ini akan dibangun sebuah aplikasi prediksi penentuan kelancaran pembayaran koperasi dengan algoritma C5.0 agar dapat menyelesaikan permasalahan yang diuraikan. Hasil penelitian menunjukkan bahwa penerapan algoritma C5.0 dapat digunakan untuk memprediksi kelancaran pembayaran koperasi secara akurat berdasarkan jumlah data training yang tersedia.
IMPLEMENTASI ALGORITMA LEVENBERG–MARQUARDT DALAM PREDIKSI DINI PENYAKIT KARDIOVASKULAR Wijaya, Edi
Majalah Ilmiah METHODA Vol. 13 No. 3 (2023): Majalah Ilmiah METHODA
Publisher : Universitas Methodist Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46880/methoda.Vol13No3.pp268-274

Abstract

Heart disease or also known as cardiovascular disease are all diseases that occur due to impaired heart function. Heart disease is the result of plaque buildup in the coronary arteries, which blocks blood flow to the heart and increases the risk of heart attack and other complications. Cardiovascular disease due to atherosclerosis is a challenge in itself because this type of disease is a progressive disease that can be modified by various actions and only causes few symptoms until the end of the course of this disease but when this disease is clinically proven, there is only a short duration between the time of onset of symptoms and pain, disability, even death. Risk factors for cardiovascular disease begin at a young age, even when a person has no symptoms and is not aware of the consequences of these risk factors. This Early Cardiovascular Disease Prediction application implements the Levenberg Marquardt algorithm in a cardiovascular disease grouping system so that the search process requires a relatively fast time. This Cardiovascular Disease Early Prediction application can be accessed easily using a smartphone so that users can access it quickly and efficiently.
Makna Tersembunyi Pada Video Klip “Jiwa Yang Bersedih” Milik Ghea Indrawari Sejati, Taqwa; Wijaya, Edi
AL-MIKRAJ Jurnal Studi Islam dan Humaniora Vol. 4 No. 02 (2024): Al-Mikraj, Jurnal Studi Islam dan Humaniora
Publisher : Pascasarjana Institut Agama Islam Sunan Giri Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37680/almikraj.v4i02.4470

Abstract

Video clips are a means of promotion and expression for those involved in the world of entertainment everywhere, including in Indonesia. The discussion in this research is Ghea Indrawari's video clip, directed by Joshua Axel Limandjaja on the record label Hits Records. This research is a type of descriptive qualitative research which uses a communication science approach, specifically focusing on mass communication, one of the objects of research is the video clip in question. Meanwhile, the data collection method used in this research is Ferdinand Saussure's semiotic theory, observation is also of course documentation to strengthen and serve as authentic evidence. Otherwise, the sources for this research also came from the researcher's book, search results from several research supporting articles on confirmed website pages as well as supporting documents both outside the network and on other networks. The next step is that the collected data is immediately analyzed. The results of the analysis are data education regarding the theory used, explanation and conclusions.
Opini Lirik “Gala Bunga Matahari” Lagu Sal Priadi Wijaya, Edi; Sejati, Taqwa; Wulandari, Sri
AL-MIKRAJ Jurnal Studi Islam dan Humaniora Vol. 5 No. 01 (2024): Al-Mikraj, Jurnal Studi Islam dan Humaniora
Publisher : Pascasarjana Institut Agama Islam Sunan Giri Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37680/almikraj.v5i01.5837

Abstract

Nowadays, song lyrics have become an expression of the writer's heart which is then sung by singers with a certain style and distinctive characteristics. The song then becomes a 'prayer' from the writer for the listener, which invites the listener to feel love and joy and also undeniably invites a feeling of sadness together. This research is a type of qualitative descriptive research which uses a communication science approach, specifically focusing on mass communication, one of the objects of research is the lyrics in question. Meanwhile, the data collection method used in this research is Ferdinand Saussure's semiotic theory, observation is also of course documentation to strengthen and serve as authentic evidence. Meanwhile, the sources for this research also come from the researcher's book, search results from several research supporting articles on confirmed website pages as well as supporting documents both outside the network and on other networks. The next step is for the collected data to be immediately analyzed. The results of the analysis are data education regarding the theory used, explanation and conclusions
Konstruksi Pick Me Girl Dalam Video Klip “Dear Future Husband” Meghan Trainor Wijaya, Edi; Sejati, Taqwa
AL-MIKRAJ Jurnal Studi Islam dan Humaniora Vol. 5 No. 2 (2025): Al-Mikraj, Jurnal Studi Islam dan Humaniora
Publisher : Pascasarjana Institut Agama Islam Sunan Giri Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37680/almikraj.v5i2.6942

Abstract

The video clip becomes a creative outlet for conveying the singer's message, which is done together with the director he chooses. It is not uncommon for video clips to be realized as jokes, short films, criticism and even social lessons contained in the story. The video clip is also a realization of the lyrics sung and is part of its construction. This research is a type of qualitative descriptive research which uses a communication science approach, specifically focusing on mass communication, one of the research objects is a video clip of Dear Futur Husband belonging to the American singer, Meghan Trainor. Researchers use the theory of social reality construction in mass media as the theory underlying this research. Meanwhile, the paradigm used is the Constructivism paradigm with a qualitative approach. The method used is the content analysis method with Charles Sanders Peirce's semiotics as the analysis technique and observation is also of course documentation to strengthen and serve as authentic evidence. Meanwhile, the sources for this research also come from the video clip in question, the researcher's book, as well as several search results for research supporting articles on confirmed website pages as well as supporting documents both outside the network and in other networks. The next step taken by researchers was to immediately analyze the collected data. The results of the analysis are data education regarding the theory used, explanations and conclusions from the researcher.
Multi-Class Brain Tumor Segmentation and Classification in MRI Using a U-Net and Machine Learning Model Hendrik, Jackri; Pribadi, Octara; Hendri, Hendri; Hoki, Leony; Tarigan, Feriani Astuti; Wijaya, Edi; Ali, Rabei Raad
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 5 (2025): JUTIF Volume 6, Number 5, Oktober 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.5.5369

Abstract

Brain tumor diagnosis remains a critical challenge in medical imaging, as accurate classification and precise localization are essential for effective treatment planning. Traditional diagnostic approaches often rely on manual interpretation of MRI scans, which can be time-consuming, subjective, and prone to variability across radiologists. To address this limitation, this study proposes a two-stage framework that integrates machine learning (ML) based classifiers for tumor type recognition and a U-Net architecture for tumor segmentation. The classifier was trained to distinguish four tumor categories: glioma, meningioma, pituitary, and no tumor, while the U-Net model was employed to delineate tumor regions at the pixel level, enabling volumetric assessment. The novelty of this research lies in its dual focus that combines classification and segmentation within a single framework, which enhances clinical applicability by offering both diagnostic and spatial insights. Experimental results demonstrated that among the evaluated classifiers, XGBoost achieved the highest accuracy of 86 percent, surpassing other models such as Random Forest, SVC, and Logistic Regression, while the U-Net model delivered consistent segmentation performance across tumor types. These findings highlight the potential of hybrid ML and deep learning solutions to improve reliability, efficiency, and objectivity in brain tumor analysis. In real-world practice, the proposed framework can serve as a valuable decision-support tool, assisting radiologists in early detection, reducing diagnostic workload, and supporting personalized treatment strategies.