Claim Missing Document
Check
Articles

Found 2 Documents
Search

SENTIMENT ANALYSIS OF POST-COVID-19 INFLATION BASED ON TWITTER USING THE K-NEAREST NEIGHBOR AND SUPPORT VECTOR MACHINE CLASSIFICATION METHODS Ratih Puspitasari; Findawati, Yulian; Rosid, Mochamad Alfan
Jurnal Teknik Informatika (Jutif) Vol. 4 No. 4 (2023): JUTIF Volume 4, Number 4, August 2023
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2023.4.4.801

Abstract

The COVID-19 pandemic caused a crisis in global economic growth. The impact of injuries due to the COVID-19 pandemic has also caused price increases and an increase in the inflation rate. Inflation is a price increase caused by a certain factor so that it has an impact on the prices of nearby goods which increase the circulation of money in society to increase. Many people expressed their various opinions or criticisms of the post-COVID-19 price increase policy on social media, one of which was via Twitter. Sentiment analysis was carried out to see how public sentiment is towards the price increase policy after the COVID-19 pandemic, and these sentiments are combined into multiclasses, namely positive, negative and neutral sentiments. So that this sentiment can later be used as material for evaluation regarding the post-COVID-19 price increase policy. This study aims to see and compare the accuracy of the two classification methods, namely K-Nearest Neighbor (K-NN) and Support Vector Machine (SVM) in the sentiment classification process. The data used was 5989 tweets with the keywords ""Stuffets Go Up Post-Pandemic", "Fuel Goes Up", "Inflation 2022", "Covid19 Inflation", "Inflation Post-Pandemic" with a data collection period from August to October 2022. The data obtained then enter the text preprocessing stage before later entering the classification stage. The results obtained after carrying out the classification using the K-Nearest Neighbor (K-NN) and Support Vector Machine (SVM) methods show that the Support Vector Machine (SVM) method has a higher accuracy of 79%, while the K-Nearest Neighbor (K -NN) has an accuracy of 54%.
Pencegahan Penyalahgunaan Narkoba Melalui Edukasi Hukum Di Desa Riwo Kabupaten Dompu Andriadin; Syamsuddin; Izzatil Mardiah, Nurul; Nasrullah; Nurfadilah; Julaiha; Aldi; Ratih Puspitasari; Al Habib
Journal of Excellence Humanities and Religiosity Vol. 3 No. 1 (2026): Januari (2026)
Publisher : Journal of Excellence Humanities and Religiosity

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34304/joehr.v3i1.506

Abstract

Penyalahgunaan narkoba masih menjadi permasalahan sosial yang berpotensi mengancam ketahanan generasi muda di Desa Riwo, Kecamatan Woja Kabupaten Dompu. Rendahnya pemahaman masyarakat, khususnya pemuda, mengenai dampak hukum, sosial, dan kesehatan akibat penyalahgunaan narkoba menjadi faktor utama mendorong perlunya upaya pencegahan berbasis edukasi. Program pengabdian kepada masyarakat bertujuan untuk meningkatkan kesadaran dan pemahaman hukum masyarakat tentang bahaya serta konsekuensi hukum penyalahgunaan narkoba melalui kegiatan edukasi hukum. Bentuk pelaksanaan kegiatan pengabdian dilakukan melalui seminar dan penyuluhan hukum yang membahas ketentuan normatif penerapan peraturan perundang-undangan tentang narkotika, dampak sosial penyalahgunaan narkoba, serta peran masyarakat dalam upaya pencegahan. Metode pelaksanaan kegiatan terdiri atas tiga tahap, yaitu persiapan, pelaksanaan, dan evaluasi. Tahap persiapan meliputi koordinasi dengan pemerintah desa dan penyusunan materi edukasi hukum. Tahap pelaksanaan dilakukan melalui penyampaian materi dan diskusi interaktif dengan masyarakat. Tahap evaluasi dilakukan melalui observasi partisipasi peserta dan wawancara singkat untuk mengetahui tingkat pemahaman peserta setelah kegiatan. Hasil kegiatan menunjukkan adanya peningkatan pemahaman dan kesadaran hukum masyarakat mengenai bahaya dan sanksi hukum penyalahgunaan narkoba. Program ini membuktikan bahwa edukasi hukum yang dilakukan secara sistematis dan partisipatif dapat menjadi upaya preventif yang efektif dalam menekan potensi penyalahgunaan narkoba di lingkungan masyarakat Desa