Claim Missing Document
Check
Articles

Found 13 Documents
Search

IoT for smart home system Puji Catur Siswipraptini; Rosida Nur Aziza; Iriansyah Sangadji; Indrianto Indrianto; Riki Ruli A. Siregar; Grace Sondakh
Indonesian Journal of Electrical Engineering and Computer Science Vol 23, No 2: August 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v23.i2.pp733-739

Abstract

This paper examines the integration of smart home and solar panel system that is controlled and monitored using IoT (internet ofthings). To enable the smart home system to monitor the activity within the house and act according to the current conditions, it is equipped with several sensors, actuators and smart appliances. All of these devices have to be connected to a communication network, so they can communicate and provide services forthe smart home’s in habitants. The smart home system was first introduced to provide comfort and convenience, but later it should also address many other things, e.g. the importance of the efficient use of energy or electricity and hybrid use of energy sources. A solar panel is added to the smart home prototype and its addition is studied. Adaptive linear neural network is implemented in the prototype as an algorithm for predicting decisions based on the current conditions. The construction of the proposed integrated systemis carried out through several procedures, i.e. the implementation of the adaptive linear neural network (ADALINE) as the neural network method, the design of the prototype and the testing process. This prototype integrates functionalities of several household appliances into one application controlled by an Android-based framework.
MODEL KLASIFIKASI BERBASIS MACHINE LEARNING UNTUK PERPANJANGAN MASA JABATAN KEPALA SEKOLAH MENGGUNAKAN ALGORITMA C4.5 Puji Catur Siswipraptini; Ahmad Saputra Fadiarora; Hengki Sikumbang
Jurnal Indonesia : Manajemen Informatika dan Komunikasi Vol. 4 No. 1 (2023): Jurnal Indonesia : Manajemen Informatika dan Komunikasi (JIMIK)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) AMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/jimik.v4i1.167

Abstract

The extension assessment process of the tenure’s school principal at Dinas Pendidikan Kabupaten Musi Rawas runs manually, so it takes more than 1 (one) month to get the results. This study aims to model a classification based on Machine Learning technique using the C4.5 Decission Tree algorithm to make it easier for supervisors to provide recommendations whether the principal’s position has Extended or Not Extended status. The research design uses the CRISP-DM concept which is adopted to the needs of the research objectives. The resulting model has 15 rules which are used as the basis for forming a Decision Tree. Model validation measurement was tested using the Confusion Matrix method and it provides an accuracy of 83,3%.
Klasifikasi Pekerjaan Bidang Teknologi Informasi Menggunakan Algoritma Cosine Similarity Puji Catur Siswipraptini
KILAT Vol. 12 No. 1 (2023): KILAT
Publisher : Institut Teknologi PLN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33322/kilat.v12i1.2001

Abstract

Keterampilan setiap jenis pekerjaan harus disiapkan sejak mahasiswa berada di jenjang pendidikantinggi. Jenis pekerjaan dan ketrampilan pendukungnya menjadi salah satu landasan bagi programstudi dalam menyusun peminatan mata kuliah sesuai kebutuhan indsutri. Sehingga program studimembutuhkan pedoman untuk menyusun kurikulum yang sesuai dengan kebutuhan industri.Penelitian ini bertujuan melakukan klasifikasi jenis pekerjaan di bidang Teknologi Informasi (TI)menurut Computing Curricula tahun 2020, yang dikeluarkan oleh ACM sebagai salah satu pedoman Perguruan Tinggi (PT) di bidang Ilmu Komputer yang ada di Indonesia dalam menyusun kompetensi lulusan dan kurikulum PT. Klasifikasi pekerjaan di lakukan berdasarkan kebutuhan dunia industri yang tercermin pada iklan/website lowongan pekerjaan yang ada di Indonesia. Teknik klasifikasi dilakukan dengan beberapa langkah yaitu web scraping pada website lowongan pekerjaan, teks pra prosesing untuk membersihkan data hasil web scraping dan klasifikasi 10 jenis pekerjaan menggunakan algoritma Cosine Similarity. Algoritma Cosine Similarity melakukan analisis jarak kemiripan antar dokumen keseluruhan jenis pekerjaan dengan keterampilan yang dibutuhkan pada setiap pekerjaan bidang Teknologi Informasi. Tingkat kemiripan tertinggi sebesar 63% pada pekerjaan Computer Network Architects dan akurasi tertinggi diperoleh sebesar 33,5% menggunakan teknik k-fold cross validation.