Septiyan Andika Isanta
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Pelabelan Klaster Fitur Secara Otomatis pada Perbandingan Review Produk Rozi, Fahrur; Wijoyo, Satrio Hadi; Isanta, Septiyan Andika; Azhar, Yufis; Purwitasari, Diana
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 1, No 2 (2014)
Publisher : Fakultas Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (711.042 KB)

Abstract

Abstrak Penggunaan review produk sebagai suatu sumber untuk mendapatkan informasi dapat dimanfaatkan untuk mengoptimalkan pemasaran suatu produk. Situs belanja online merupakan salah satu sumber yang dapat digunakan untuk pengambilan review produk. Analisa terhadap produk dapat dilakukan dengan membandingkan antara dua buah produk berbeda berdasarkan fitur produk tersebut. Fitur dari suatu produk didapatkan melalui ekstraksi fitur dengan metode double propagation. Fitur yang terdapat dalam sebuah review sangat banyak serta terdapat beberapa kata yang memiliki arti yang sama yang mewakili suatu fitur tertentu, sehingga diperlukan suatu pengelompokan terhadap fitur tersebut. Pengelompokan suatu fitur produk dapat dilakukan secara otomatis tanpa memperhatikan kamus kata, yaitu dengan menggunakan teknik clustering. Hierarchical clustering merupakan salah satu metode yang dapat digunakan untuk pengelompokan terhadap fitur produk. Pengujian dengan metode hierarchical clustering untuk pengelompokan fitur menunjukkan bahwa metode average linkage memiliki nilai recall dan f-measure yang paling tinggi. Sementara untuk pengujian pelabelan menunjukkan bahwa semantic similarity antar fitur lebih berpengaruh dari pada kemunculan fitur di dokumen. Kata kunci: clustering, fitur produk, pelabelan Abstract Product review can be used as a source for acquire information and to optimize the marketing of product. Online shopping sites are one of source that can be used to get product reviews. Analysis of the product can be done by comparing two different products based on product’s features. Features of a product can be obtained through extraction of features with double propagation method. In the product review there are many feature that can be found, and there are some words that have the same meaning which represents a particular feature, so we need a grouping on the feature. Hierarchical clustering is one method that can be used for grouping the features of the product. Based on testing, hierarchical clustering method for grouping feature indicate that the average linkage method has the highest recall and f-measure. As for testing in labeling indicates that the semantic similarity between features is more influential than the appearance of features in the document. Keywords: clustering, features of the product, labeling
Pelabelan Klaster Fitur Secara Otomatis pada Perbandingan Review Produk Rozi, Fahrur; Wijoyo, Satrio Hadi; Isanta, Septiyan Andika; Azhar, Yufis; Purwitasari, Diana
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 1 No 2: Oktober 2014
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (711.042 KB) | DOI: 10.25126/jtiik.201412112

Abstract

Abstrak Penggunaan review produk sebagai suatu sumber untuk mendapatkan informasi dapat dimanfaatkan untuk mengoptimalkan pemasaran suatu produk. Situs belanja online merupakan salah satu sumber yang dapat digunakan untuk pengambilan review produk. Analisa terhadap produk dapat dilakukan dengan membandingkan antara dua buah produk berbeda berdasarkan fitur produk tersebut. Fitur dari suatu produk didapatkan melalui ekstraksi fitur dengan metode double propagation. Fitur yang terdapat dalam sebuah review sangat banyak serta terdapat beberapa kata yang memiliki arti yang sama yang mewakili suatu fitur tertentu, sehingga diperlukan suatu pengelompokan terhadap fitur tersebut. Pengelompokan suatu fitur produk dapat dilakukan secara otomatis tanpa memperhatikan kamus kata, yaitu dengan menggunakan teknik clustering. Hierarchical clustering merupakan salah satu metode yang dapat digunakan untuk pengelompokan terhadap fitur produk. Pengujian dengan metode hierarchical clustering untuk pengelompokan fitur menunjukkan bahwa metode average linkage memiliki nilai recall dan f-measure yang paling tinggi. Sementara untuk pengujian pelabelan menunjukkan bahwa semantic similarity antar fitur lebih berpengaruh dari pada kemunculan fitur di dokumen. Kata kunci: clustering, fitur produk, pelabelan Abstract Product review can be used as a source for acquire information and to optimize the marketing of product. Online shopping sites are one of source that can be used to get product reviews. Analysis of the product can be done by comparing two different products based on product’s features. Features of a product can be obtained through extraction of features with double propagation method. In the product review there are many feature that can be found, and there are some words that have the same meaning which represents a particular feature, so we need a grouping on the feature. Hierarchical clustering is one method that can be used for grouping the features of the product. Based on testing, hierarchical clustering method for grouping feature indicate that the average linkage method has the highest recall and f-measure. As for testing in labeling indicates that the semantic similarity between features is more influential than the appearance of features in the document. Keywords: clustering, features of the product, labeling
Optimasi Suffix Tree Clustering dengan Wordnet dan Named Entity Recognition untuk Pengelompokan Dokumen Wijoyo, Satrio Hadi; Herlambang, Admaja Dwi; Rozi, Fahrur; Isanta, Septiyan Andika
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 4 No 4: Desember 2017
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (644.179 KB) | DOI: 10.25126/jtiik.201744400

Abstract

AbstrakSemakin meningkatnya jumlah dokumen teks di dunia digital mempengaruhi banyaknya jumlah informasi  dan menyebabkan kesulitan dalam proses temu kembali informasi (information retreival). Clustering dokumen merupakan suatu bidang text mining yang penting dan dapat digunakan untuk mengefisienkan dalam pengelolaan teks serta peringkasan teks. Namun beberapa permasalahan muncul dalam clustering dokumen teks terutama dalam dokumen berita seperti ambiguitas dalam content, overlapping cluster, dan struktur unik yang terdapat dalam dokumen berita. Penelitian ini mengusulkan metode baru yaitu optimasi Suffix Tree Clustering (STC) dengan WordNet dan Named Entity Recognition (NER) untuk pengelompokan dokumen. Metode ini memiliki beberapa tahap, yaitu prepocessing dokumen dengan mengekstraksi named entity serta melakukan deteksi sinonim berdasarkan WordNet. Tahap kedua adalah pembobotan term dengan tfidf dan nerfidf. Tahap ketiga adalah melakukan clustering dokumen dengan menggunakan Suffix Tree Clustering. Berdasarkan pengujian didapatkan rata-rata nilai precision sebesar 79.83%, recall 77.25%, dan f-measure78.30 %.Kata kunci: Clustering dokumen, Named Entity Recognition, Suffix Tree Clustering, WordNetAbstractThe increasingnumber oftext documentsin the internet, influence on the number of information and lead to difficulties in the process of information retrieval. Documents clustering is main field of text mining and can be used to stream line the management of text and summarization of text. However, some problems a risein documents clustering, especially in news documents such as ambiguity in the content, overlapping clusters, and theuniquestructure ofthe news thatcontained inthe document. Inthisresearch, we proposea newmethodfor documents clustering, optimization Suffix Tree Clustering (STC) with WordNet and Named Entity Recognition (NER). In this method there are several step, step one is prepocessing documents with named entity extraction and synonym detection based on WordNet. Step two is term weighting with tfidf and nerfidf. For the last step is document clustering using Suffix Tree Clustering. Based on testingwe obtained 79.83% for precision, 77.25% for recall, and78.30% for F-measureKeywords: Documents Clustering, Named Entity Recognition, Suffix Tree Clustering, WordNet