Claim Missing Document
Check
Articles

Found 17 Documents
Search

Determination of Kinetic Parameters for Methane Oxidation over Pt/γ-Al2O3 in a Fixed-Bed Reactor Wonoputri, Vita; Effendy, Mohammad; Budhi, Yogi Wibisono; Bindar, Yazid; Subagjo, S.
Journal of Engineering and Technological Sciences Vol 45, No 2 (2013)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (518.085 KB) | DOI: 10.5614/j.eng.technol.sci.2013.45.2.7

Abstract

This paper describes akinetic study for the determination of the kinetic parameters of lean methane emission oxidation over Pt/γ-Al2O3 in a dedicated laboratory scale fixed bed reactor. A model ofthemechanistic reaction kinetic parameters has been developed. The reaction rate model was determined using therate-limiting step method, which was integrated and optimized to find the most suitable model and parameters. Based on this study, the Langmuir-Hinshelwood reaction rate model with the best correlationis the one where the rate-limiting step is thesurface reaction between methane and one adsorbed oxygen atom. The pre-exponential factor and activation energy were 9.19 x 105 and 92.04 kJ/mol, while the methane and oxygen adsorption entropy and enthalpy were –17.46 J/mol.K, –2739.36 J/mol,–16.34 J/mol.K, and –6157.09 J/mol, respectively.
Homogeneity of Continuum Model of an Unsteady State Fixed Bed Reactor for Lean CH4 Oxidation Subagjo, S.; Budhi, Yogi Wibisono; Effendy, M.; Bindar, Yazid
Journal of Engineering and Technological Sciences Vol 46, No 2 (2014)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (479.426 KB) | DOI: 10.5614/j.eng.technol.sci.2014.46.2.6

Abstract

In this study, the homogeneity of the continuum model of a fixed bed reactor operated in steady state and unsteady state systems for lean CH4 oxidation is investigated. The steady-state fixed bed reactor system was operated under once-through direction, while the unsteady-state fixed bed reactor system was operated under flow reversal. The governing equations consisting of mass and energy balances were solved using the FlexPDE software package, version 6. The model selection is indispensable for an effective calculation since the simulation of a reverse flow reactor is time-consuming. The homogeneous and heterogeneous models for steady state operation gave similar conversions and temperature profiles, with a deviation of 0.12 to 0.14%. For reverse flow operation, the deviations of the continuum models of thepseudo-homogeneous and heterogeneous models were in the range of 25-65%. It is suggested that pseudo-homogeneous models can be applied to steady state systems, whereas heterogeneous models have to be applied to unsteady state systems.
Axial Inlet Geometry Effects on the Flow Structures in a Cyclone Burner Related to the Combustion Performance of Biomass Particles Pasymi, P.; Budhi, Yogi Wibisono; Bindar, Yazid
Journal of Engineering and Technological Sciences Vol 50, No 5 (2018)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1675.528 KB) | DOI: 10.5614/j.eng.technol.sci.2018.50.5.7

Abstract

Solid fuel combustion is always preceded by chemical decomposition. This process is largely determined by the flow structure and affected by the geometry and operating conditions of the combustion chamber. This study aimed to investigate the effect of relative axial inlet diameter (Dai//Dbc) on the flow structure in the proposed cyclone burner. The flow structure was determined with the standard k-e turbulent model using the Ansys-Fluent software. From the simulation results it was concluded that with all the axial inlet diameters used an integrated vortex formed in the center of the burner cylinder. The integrated vortex consisted of two vortices, namely a primary vortex and a secondary vortex. The primary vortex penetrated from the furnace box to the burner cylinder, while the secondary vortex was formed in the burner cylinder itself. There were two integration patterns from the primary vortex and the secondary vortex, namely a summation pattern and a multilayer pattern. The presence of a vortex in the center of the burner cylinder is allegedly responsible for an increase in the degree of mixing and pressure drop in that zone. The flow structure induced from the proposed burner had high symmetricity and was largely determined by the burner’s axial inlet diameter.
Bioethanol Production from Sugarcane Bagasse Using Neurospora intermedia in an Airlift Bioreactor Restiawaty, Elvi; Gani, Kindi Pyta; Dewi, Arinta; Arina, Linea Alfa; Kurniawati, Katarina Ika; Budhi, Yogi Wibisono; Akhmaloka, Akhmaloka
International Journal of Renewable Energy Development Vol 9, No 2 (2020): July 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.2.247-253

Abstract

Bagasse as solid waste in sugarcane industry can be utilized as one of the potential raw materials in the bioprocess industry. This research aims to investigate the conversion of bagasse to bioethanol using simultaneous saccharification and fermentation in an airlift bioreactor. Neurospora intermedia was used as a biological agent that carried out the saccharification and fermentation of sugarcane bagasse simultaneously for bioethanol production. Cell morphology of N. intermedia in the form of pellet was required to provide free movement in the axial flow of airlift bioreactor. The medium pH strongly affects the morphological shape of N. intermedia. Therefore, the formation of good pellets of inoculum was observed under acidic conditions, i.e. pH 3.0 – 3.5. The effect of the initial concentration of nutrient on the inoculum growth was also investigated. Inoculums cultured in potato dextrose broth (PDB) medium with a half the strength of the common nutrient concentration of PDB qualitatively indicated good growth in terms of the size and density of cells. The inoculums with good morphological form were fed into the airlift bioreactor, which already contained a liquid medium with initial pH of 3.5 and also contained pre-treated bagasse. In experiments using the airlift bioreactor, the pre-treated bagasse was added to various nutrient concentrations of the PDB infusion medium. The highest bioethanol production from bagasse was monitored in the medium culture of half strength PDB infusion. The yield of bioethanol obtained from total sugarcane bagasse and PDB in an air lift bioreactor achieved approximately 40%, which has an infusion medium with a half-strength PDB and initial pH of 3.0. 
Simulation and optimization of coupling reaction of methanol synthesis and isopropyl alcohol dehydrogenation Jenny Rizkiana; Yogi Wibisono Budhi; Azis Trianto
Jurnal Teknik Kimia Indonesia Vol 10, No 3 (2011)
Publisher : ASOSIASI PENDIDIKAN TINGGI TEKNIK KIMIA INDONESIA (APTEKIM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jtki.2011.10.3.3

Abstract

A study on simulation and optimization of coupling reaction between methanol synthesis and isopropyl alcohol (IPA) dehydrogenation was performed. The analysis is carried out theoretically to obtain the optimum operation conditions which give the best performance. The reactions are just interacting thermally. In this study, both reactions are held catalytically in a heat-exchanger type reactor. As a high pressure reaction, methanol synthesis is placed in the inner side of reactor tube while dehydrogenation of IPA is in the opposite. Tube wall acts as a heat transfer media. The reactor is modeled by a steady state heterogeneous equation for a fixed bed reactor. Optimization is done in order to find the optimum value of operation conditions, those are the inlet temperature of both side of reactor and the molar feed flow ratio between the exothermic side and the endothermic side. Sum of weighted reaction conversion is considered to be the objective function that is maximized. The simulation result shows that coupled reactor makes the reaction conversion higher than a conventional adiabatic reactor and the optimum operation conditions give the maximum value of the conversion. This study presents a theoretical proof that coupling reaction is feasible. Keywords: coupling reaction, IPA dehydrogenation, methanol synthesis, optimization, simulated annealingAbstrak Telaah mengenai simulasi dan optimisasi reaksi perangkaian (coupling reaction) antara sintesis metanol dengan dehidrogenasi isopropil alkohol (IPA) telah dilakukan. Analisis dilaksanakan secara teoretik guna mendapatkan kondisi optimum yang akan memberikan hasil terbaik. Pada penelitian ini, kedua reaksi dilaksanakan secara katalitik dalam reaktor bertipe buluh-cangkang. Karena bertekanan tinggi, sintesis metanol ditempatkan pada sisi buluh, sedangkan dehidrogenasi IPA ditempatkan pada sisi cangkang. Dinding buluh berperan sebagai media perpindahan panas. Reaktor dimodelkan dengan reaktor heterogen tunak unggun tetap. Optimisasi dilakukan dalam rangka mendapatkan nilai optimum dari kondisi operasi yang mencakup temperatur inlet sisi eksotermik dan endotermik serta rasio umpan molarnya. Jumlah total konversi reaksi terbobotkan dipilih sebagai nilai objectif yang akan dioptimumkan. Hasil simulasi menunjukkan bahwa reaktor perangkaian termal mampu meningkatkan konversi reaksi jika dibandingkan dengan reaktor adiabatik dan pada kondisi operasi yang optimum diperoleh konversi maksimal. Penelitian ini menunjukkan bahwa reaksi perangkaian layak untuk dilaksanakan.Kata kunci: reaksi perangkaian, dehidrogenasi IPA, sintesis methanol, optimisasi, simulated annealing
Pemanfaatan emisi gas metana dari stasiun kompresor sistem perpipaan gas alam sebagai sumber energi termal Yogi Wibisono Budhi; Mohammad Effendy
Jurnal Teknik Kimia Indonesia Vol 8, No 1 (2009)
Publisher : ASOSIASI PENDIDIKAN TINGGI TEKNIK KIMIA INDONESIA (APTEKIM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jtki.2009.8.1.2

Abstract

Methane gas emmision utilization from natural gas piping system compressor station as thermal energy sourceEmission of CH4 gas to the atmosphere may result in a global warming effect 21 times larger than that of CO2. One of the strategies to reduce this impact is to convert CH4 to CO2 in a Reverse Flow Reactor (RFR). RFR is a suitable apparatus to process gases with very low concentrations (0.1–1 %-v). The CH4 combustion reaction is exothermic, with a DTadiabatic between 10–200 oC (at a 0.1–1 %-v concentration), and therefore its heat of reaction may be used as a thermal energy source. RFR is capable of controlling heat transfer in the reactor, storing heat, and releasing it to heat low-temperature feeds. This paper presents the results of a study on the effect of the removal of heat generated by CH4 combustion as thermal energy source on the performance of RFR. The methodology in this study involved computer simulations. For a feed flowrate of 0.22 L/s, the optimum rate of heat that can be recovered was 43 kJ/m3×s (heat recovery efficiency of 50.4%). An air flowrate of 92.9 g/s was required to extract the heat.Keyword: Reverse flow reactor, methane catalytic combustion, modeling, green house effect simulation, gas piping system. AbstrakEmisi gas CH4 ke atmosfer dapat menyebabkan pengaruh pemanasan global 21 kali lebih tinggi dibandingkan gas CO2. Salah satu strategi untuk mengurangi dampak tersebut adalah dengan mengkonversi gas CH4 menjadi CO2 dalam Reaktor Aliran Bolak-Balik (RABB). RABB adalah piranti yang tepat untuk mengolah gas yang berkonsentrasi sangat kecil (0,1-1 %-v). Reaksi pembakaran CH4 bersifat eksotermis dengan DTadiabatik berkisar antara 10–200 oC (konsentrasi 0,1–1 %-v), sehingga panas reaksinya dapat dimanfaatkan sebagai sumber energi termal. RABB memiliki kemampuan dalam mengendalikan pergerakan panas di dalam reaktor, menyimpan panas, dan memberikannya kembali untuk memanaskan umpan yang bertemperatur rendah. Makalah ini menyampaikan hasil kajian tentang pengaruh pengambilan panas hasil reaksi pembakaran gas CH4 sebagai sumber energi termal terhadap kinerja RABB. Metodologi yang digunakan adalah dengan simulasi komputer. Untuk laju alir umpan sebesar 0,22 L/s, panas optimum yang dapat dimanfaatkan adalah 43 kJ/m3.s (efisiensi pemulihan panas 50,4%) dan dibutuhkan laju alir udara sebesar 92,9 g/s untuk mengekstrak panas.Kata kunci: Reaktor aliran bolak-balik, pembakaran katalitik metana, pemodelan, simulasi efek rumah kaca, sistem perpipaan gas
Pemodelan dan simulasi reverse flow reactor untuk oksidasi katalitik metana: pengembangan prosedur operasi start-up Yogi Wibisono Budhi; Teguh Kurniawan; Yazid Bindar
Jurnal Teknik Kimia Indonesia Vol 10, No 2 (2011)
Publisher : ASOSIASI PENDIDIKAN TINGGI TEKNIK KIMIA INDONESIA (APTEKIM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jtki.2011.10.2.4

Abstract

Modeling and simulation of reverse flow reactor for the catalytic oxidation of methane: the development of start-up operating procedures In this modelling and simulation study, three operating procedures during start-up of lean methane (1%-v) oxidation in reverse flow reactor (RFR) have been investigated to get auto-thermal condition, high methane conversion, faster pseudo steady state, and low preheating energy requirement. The RFR model developed based on one-dimension pseudo-homogeneous model for mass balance and heterogeneous model for energy balance. Procedure 1 , the preheating was employed only on the catalyst zone, fails to conduct the auto-thermal reaction and to achieve high conversion. Procedure 2, the preheating was employed for inert and catalyst of left side only, able to achieve the auto-thermal up to switching time (ST) 230 s. Procedure 3, the preheating was employed along the reactor bed, achieve the auto-thermal condition up to ST 300 s. Procedure 2 and 3 achieved the pseudosteadystate at 1000 s for ST 200 s with total conversion during start-up are 95% and 99%. The conversion of Procedure 3 higher than Procedure 2, unfortunately the heat load of Procedure 3 two times higher than Procedure 2. Keywords: modelling and simulation, catalytic methane oxidation, start-up procedure, reverse flow reactor, switching timeAbstrakDi dalam studi pemodelan dan simulasi ini, berbagai prosedur operasi reverse flow reactor (RFR) selama start-up untuk oksidasi katalitik metana encer (1%-v) dikaji dengan target sistem beroperasi secara ototermal, konversi metana tinggi, waktu pencapaian kondisi tunak semu (pseudosteady state) cepat, dan beban panas rendah. Pemodelan reaktor didasarkan pada model satu dimensi dan pseudohomogeneous untuk neraca massa, serta heterogen untuk neraca energi. Pemanasan katalis saja pada awal reaksi (Prosedur 1) tidak dapat mencapai kondisi reaktor yang ototermal. Pemanasan katalis dan inert bagian kiri (Prosedur 2) mampu mencapai kondisi reaktor yang ototermal hingga switching time (ST) 230 detik. Pemanasan seluruh bagian reaktor pada awal reaksi (Prosedur 3) mampu mencapai kondisi reaktor yang ototermal pada ST paling lama 300 detik. Prosedur start-up 2 dan 3 untuk ST 200 detik sama-sama mencapai waktu pseudosteady state pada 1000 detik dengan konversi total selama start-up masing-masing 95% dan 99%. Meskipun Prosedur 3 memberikan konversi sedikit lebih tinggi daripada Prosedur 2, namun beban panas Prosedur 3 mencapai dua kali lebih besar daripada Prosedur 2.Kata kunci: emisi metana, pemodelan dan simulasi, prosedur start-up, reverse flow reactor, switching time.
Permodelan dan simulasi reaktor mikro untuk produksi hidrogen sebagai umpan sel bahan bakar kendaraan bermotor Yogi Wibisono Budhi; S Subagjo
Jurnal Teknik Kimia Indonesia Vol 6, No 2 (2007)
Publisher : ASOSIASI PENDIDIKAN TINGGI TEKNIK KIMIA INDONESIA (APTEKIM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jtki.2007.6.2.6

Abstract

The terminology of micro-reactor development is one of the keywords in process intensification, which plays an important role, particularly in the reaction system requiring extremely large heat and mass transfers.  This paper  conveys an idea about miniaturization of the combustion engine through a combination of fuel processor  system  and fuel  cell system. Hydrogen as a fuel cell feedstock is provided in-situ by methanol reforming. The synthesis gas produced  by reformer is introduced into preferential oxidation reactor to remove CO before it enters the fuel cell. The process system for producing hydrogen is equipped in the micro-technology package as an answer to hydrogen storage at  high pressure,  which meets several shortcomings. Keywords: Process intensification; Modeling and simulation; Micro-reactor technology AbstrakTerminologi pengembangan reaktor mikro merupakan salah satu 'kata kunci' dalam intensifikasi proses yang memainkan peranan penting, terutama dalam sistem reaksi yang memerlukan laju perpindahan panas dan massa yang besar. Makalah ini menyampaikan gagasan  tentang miniaturisasi  mesin  kendaraan  bermotor  melalui kombinasi  sistem proses or bahan bakar dan sel bahan bakar. Hidrogen yang diperlukan sebagai  umpan sel bahan bakar disediakan secara insitu dari reformasi metanol. Gas sintesis dari reformer diumpankan ke dalam reaktor oksidasi preferensial untuk menyisihkan CO sebelum diumpankan ke dalam sel bahan bakar. Rangkaian sistem proses penyedia hidrogen secara insitu ini dikemas dalam paket teknologi mikro sebagai jawaban atas kebuntuan sistem penyediaan hidrogen pada  tekanan tinggi yang memiliki banyak kelemahan.Kata Kunci: Intensifikasi proses; Pemodelan dan simulasi; Teknologi reaktor mikro
Intensifikasi Proses dalam Sistem Reaksi dan Pemisahan Dinamik Yogi Wibisono Budhi
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" 2020: PROSIDING SNTKK 2020
Publisher : Seminar Nasional Teknik Kimia "Kejuangan"

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Determination of Kinetic Parameters for Methane Oxidation over Pt/γ-Al2O3 in a Fixed-Bed Reactor Vita Wonoputri; Mohammad Effendy; Yogi Wibisono Budhi; Yazid Bindar; S. Subagjo
Journal of Engineering and Technological Sciences Vol. 45 No. 2 (2013)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2013.45.2.7

Abstract

This paper describes akinetic study for the determination of the kinetic parameters of lean methane emission oxidation over Pt/γ-Al2O3 in a dedicated laboratory scale fixed bed reactor. A model ofthemechanistic reaction kinetic parameters has been developed. The reaction rate model was determined using therate-limiting step method, which was integrated and optimized to find the most suitable model and parameters. Based on this study, the Langmuir-Hinshelwood reaction rate model with the best correlationis the one where the rate-limiting step is thesurface reaction between methane and one adsorbed oxygen atom. The pre-exponential factor and activation energy were 9.19 x 105 and 92.04 kJ/mol, while the methane and oxygen adsorption entropy and enthalpy were "“17.46 J/mol.K, "“2739.36 J/mol,"“16.34 J/mol.K, and "“6157.09 J/mol, respectively.