Claim Missing Document
Check
Articles

Found 17 Documents
Search

Homogeneity of Continuum Model of an Unsteady State Fixed Bed Reactor for Lean CH4 Oxidation S. Subagjo; Yogi Wibisono Budhi; M. Effendy; Yazid Bindar
Journal of Engineering and Technological Sciences Vol. 46 No. 2 (2014)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2014.46.2.6

Abstract

In this study, the homogeneity of the continuum model of a fixed bed reactor operated in steady state and unsteady state systems for lean CH4 oxidation is investigated. The steady-state fixed bed reactor system was operated under once-through direction, while the unsteady-state fixed bed reactor system was operated under flow reversal. The governing equations consisting of mass and energy balances were solved using the FlexPDE software package, version 6. The model selection is indispensable for an effective calculation since the simulation of a reverse flow reactor is time-consuming. The homogeneous and heterogeneous models for steady state operation gave similar conversions and temperature profiles, with a deviation of 0.12 to 0.14%. For reverse flow operation, the deviations of the continuum models of thepseudo-homogeneous and heterogeneous models were in the range of 25-65%. It is suggested that pseudo-homogeneous models can be applied to steady state systems, whereas heterogeneous models have to be applied to unsteady state systems.
Axial Inlet Geometry Effects on the Flow Structures in a Cyclone Burner Related to the Combustion Performance of Biomass Particles P. Pasymi; Yogi Wibisono Budhi; Yazid Bindar
Journal of Engineering and Technological Sciences Vol. 50 No. 5 (2018)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2018.50.5.7

Abstract

Solid fuel combustion is always preceded by chemical decomposition. This process is largely determined by the flow structure and affected by the geometry and operating conditions of the combustion chamber. This study aimed to investigate the effect of relative axial inlet diameter (Dai//Dbc) on the flow structure in the proposed cyclone burner. The flow structure was determined with the standard k-e turbulent model using the Ansys-Fluent software. From the simulation results it was concluded that with all the axial inlet diameters used an integrated vortex formed in the center of the burner cylinder. The integrated vortex consisted of two vortices, namely a primary vortex and a secondary vortex. The primary vortex penetrated from the furnace box to the burner cylinder, while the secondary vortex was formed in the burner cylinder itself. There were two integration patterns from the primary vortex and the secondary vortex, namely a summation pattern and a multilayer pattern. The presence of a vortex in the center of the burner cylinder is allegedly responsible for an increase in the degree of mixing and pressure drop in that zone. The flow structure induced from the proposed burner had high symmetricity and was largely determined by the burner's axial inlet diameter.
EKSTRAKSI PANAS PADA REVERSE FLOW REACTOR UNTUK OKSIDASI KATALITIK METANA SELAMA PERIODE START-UP Teguh Kurniawan; Yogi Wibisono Budhi; Yazid Bindar
Jurnal Teknika Vol 7, No 1 (2011): Edisi Juni 2011
Publisher : Faculty of Engineering, Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36055/tjst.v8i1.6705

Abstract

Makalah ini mengkaji tentang pemodelan dan simulasi oksidasi katalitik metana menggunakan reverse flow reactor (RFR). Pokok bahasan tertuju pada pengembangan prosedur pengambilan panas dalam periode start-up untuk umpan dengan konsentrasi tetap, yaitu 1%-v metana dan umpan dengan konsentrasi berfluktuasi, yaitu pada rentang 0,1-1%-v metana, yang mengikuti fungsi gelombang persegi. Hasil simulasi menunjukkan pengambilan panas dapat dilakukan selama start-up baik untuk konsentrasi tetap maupun konsentrasi berfluktuasi tanpa menyebabkan RFR padam. Pengambilan panas pada switching time (ST) yang cepat memberikan beberapa keuntungan dibandingkan pada ST  yang lama, yaitu lebih banyak panas yang dapat diekstrak dan lebih besar penurunan temperaturnya, sehingga aman bagi katalis dan reaktor.
A Singular Perturbation Problem for Steady State Conversion of Methane Oxidation in a Reverse Flow Reactor Aang Nuryaman; Agus Yodi Gunawan; Kuntjoro Adji Sidarto; Yogi Wibisono Budhi
Journal of Mathematical and Fundamental Sciences Vol. 44 No. 3 (2012)
Publisher : Institute for Research and Community Services (LPPM) ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/itbj.sci.2012.44.3.7

Abstract

The governing equations describing methane oxidation in a reverse flow reactor are given by a set of convective-diffusion equations with a nonlinear reaction term, where temperature and methane conversion are dependent variables. In this study, the process is assumed to be a one-dimensional pseudohomogeneous model and takes place with a certain reaction rate in which thewhole process ofthereactor is still workable. Thus, the reaction rate can proceed at a fixed temperature. Under these conditions, we can restrict ourselves to solving the equations for the conversion only. From the available data, it turns out that the ratio of the diffusion term to the reaction term is small. Hence, this ratio is considered as a small parameter in our model and this leads to a singular perturbation problem. Numerical difficulties will be found in the vicinity of a small parameter in front of a higher order term. Here, we present an analytical solutionby means of matched asymptotic expansions. The result shows that, up to and including the first order of approximation, the solution is in agreement with the exact and numerical solutions of the boundary value problem.
Metode operasi reverse flow reactor dengan umpan fluktuatif dalam pengolahan emisi gas metana di stasiun kompresor M. Effendy; Yogi Wibisono Budhi; Yazid Bindar; S Subagjo
Jurnal Teknik Kimia Indonesia Vol 8, No 3 (2009)
Publisher : ASOSIASI PENDIDIKAN TINGGI TEKNIK KIMIA INDONESIA (APTEKIM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jtki.2009.8.3.1

Abstract

Operation method of reverse flow reactor with fluctuating feed for methane gas emmision processing in compressor station.The leak of CH4 from the compressor stations can not be avoided and it may cause the global warming. The impact of the global warming can be reduced by oxidizing CH4 into CO2. The CH4 capture strategy using the exhaust mounted on the top of the building causes (1) CH4 levels detected in the gas mixture is very small (±1% volume), (2) the feed gas temperature is near the ambient temperature (±30 oC), (3) the CH4 concentration fluctuates over time. The reverse flow reactor (RFR) is a fixed bed reactor, which has the ability to abate the leak of CH4 and has the ability to act as an autothermal reactor. The purpose of this research is to find a proper operation procedure of the fixed bed reactor for the oxidation of lean methane emission via modeling and simulation. The reactor model is based on the continuity equation and the heat balance, while the concentration of the feed gas behavior dynamic and modeled as a step function. The model was solved numerically using the software package FlexPDE version 6. At ST (switching time) 50 seconds, the RFR operates autothermally with heat accumulation in the inert section fluctuating between 12.4 to 14.2 kJ. At ST 100 seconds, the heat trap inside the reactor increases monotonically. The use of ST 100 seconds requires an additional operation procedure to keep the reactor safe.Keywords: Global warming, concentration dynamic, autothermal operation, modeling and simulation, reverse flow reactor. AbstrakKebocoran gas CH4 dari stasiun kompresor tidak dapat dihindarkan dan ini merupakan salah satu sumber penyebab pemanasan global. Dampak pemanasan global ini dapat dikurangi dengan mengoksidasi gas CH4 menjadi gas CO2. Strategi penangkapan gas CH4 menggunakan exhaust yang terpasang pada bagian atas gedung menyebabkan (1) kadar CH4 yang terdeteksi dalam campuran gas cukup kecil (±1% volume), (2) temperatur gas umpan mendekati temperatur ruangan (± 30 oC), (3) konsentrasi gas CH4 akan berperilaku dinamik. Reverse flow reactor (RFR) mempunyai kemampuan untuk mengatasi akibat yang ditimbulkan oleh proses penangkapan gas CH4 di stasiun kompresor dan mempunyai kemampuan secara ototermal. Tujuan penelitian ini adalah mendapatkan metode operasi yang tepat untuk mengatasi gas umpan yang berperilaku dinamik. Model yang dikembangkan mengacu pada persamaan kontinuitas dan konsentrasi gas umpan yang berperilaku dinamik dimodelkan sebagai fungsi step. Model diselesaikan menggunakan software FlexPDE versi 6. Penggunaan switching time (ST) yang tepat dapat mengatasi permasalahan konsentrasi gas umpan yang berperilaku dinamik. Pada ST 50 detik, RFR mampu bekerja secara ototermal dengan nilai akumulasi panas di bagian inert yang berfluktuasi antara 12,4–14,2 kJ. Pada ST 100 detik, panas yang terjebak di dalam reaktor semakin lama semakin meningkat. Penggunaan ST 100 detik memerlukan prosedur operasi tambahan untuk menjaga reaktor agar tidak meleleh dan menjaga reaktor tetap beroperasi secara ototermal. Kata Kunci: Pemanasan global, dinamika konsentrasi, operasi ototermal, pemodelan dan simulasi, reaktor aliran bolak-balik.
Bioethanol Production from Sugarcane Bagasse Using Neurospora intermedia in an Airlift Bioreactor Elvi Restiawaty; Kindi Pyta Gani; Arinta Dewi; Linea Alfa Arina; Katarina Ika Kurniawati; Yogi Wibisono Budhi; Akhmaloka Akhmaloka
International Journal of Renewable Energy Development Vol 9, No 2 (2020): July 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.2.247-253

Abstract

Bagasse as solid waste in sugarcane industry can be utilized as one of the potential raw materials in the bioprocess industry. This research aims to investigate the conversion of bagasse to bioethanol using simultaneous saccharification and fermentation in an airlift bioreactor. Neurospora intermedia was used as a biological agent that carried out the saccharification and fermentation of sugarcane bagasse simultaneously for bioethanol production. Cell morphology of N. intermedia in the form of pellet was required to provide free movement in the axial flow of airlift bioreactor. The medium pH strongly affects the morphological shape of N. intermedia. Therefore, the formation of good pellets of inoculum was observed under acidic conditions, i.e. pH 3.0 – 3.5. The effect of the initial concentration of nutrient on the inoculum growth was also investigated. Inoculums cultured in potato dextrose broth (PDB) medium with a half the strength of the common nutrient concentration of PDB qualitatively indicated good growth in terms of the size and density of cells. The inoculums with good morphological form were fed into the airlift bioreactor, which already contained a liquid medium with initial pH of 3.5 and also contained pre-treated bagasse. In experiments using the airlift bioreactor, the pre-treated bagasse was added to various nutrient concentrations of the PDB infusion medium. The highest bioethanol production from bagasse was monitored in the medium culture of half strength PDB infusion. The yield of bioethanol obtained from total sugarcane bagasse and PDB in an air lift bioreactor achieved approximately 40%, which has an infusion medium with a half-strength PDB and initial pH of 3.0. 
Reverse Flow Reactor for Catalytic Oxidation of Lean Methane Kurniawan, Teguh; Budhi, Yogi Wibisono; Bindar, Yazid
World Chemical Engineering Journal VOLUME 2 NO. 1 JUNE 2018
Publisher : Chemical Engineering Department, Engineering Faculty, Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62870/wcej.v2i1.3493

Abstract

Methane as a potential green house gases contributor which gives 21 GWP has to be mitigated to diminish the global warming effect. High concentration methane can be easily converted into CO2 by mean oxidation. However lean methane can only be oxidized in catalytic reaction system as the catalyst lowers the reaction temperature up to 400 oC. Nevertheless, this is still high temperature to achieve by low concentration and low temperature feed. It still needs preheating the feed until its reaction condition reached which can be supplied outside or within the system called auto thermal. One of promising auto thermal reactor is reverse flow reactor which is the reactor that its feed flow periodically switches to make the heat trapped inside the reactor. In this work we have designed reverse flow reactor by one-dimensional model, pseudohomogeneous for mass and heterogeneous for energy to burn lean methane from a station compressor. The critical parameter of switching time on the system of periodical reversal is also presented