Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Akademika Kimia

Enhancement Mechanical Properties of Simalambuo Wood (Loppophetalum spp) Delignified using NaOH in The Thermomechanical Densification Method Nur Azizah; Febri Sindika; Andriayani Andriayani; Saharman Gea
Jurnal Akademika Kimia Vol. 11 No. 4 (2022)
Publisher : Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

One of the problems with fast-growing wood is the low density, which causes poor mechanical properties, so a densification process is carried out to increase the wood's density, surface hardness, and strength. In this study, the delignification process using NaOH was carried out at variations of 12.24, and 48 hours and then continued with the thermomechanical densification process. This study decreased lignin content in delignification simalambuo wood from 30% to 4%. The value of the Modulus of Rupture, Modulus of elasticity, and surface hardness increases with increasing immersion time during the delignification process. The highest values of Modulus of Rupture, Modulus of elasticity, and surface hardness were obtained by simalambuo wood soaked for 48 hours, namely, 2828.23 kg/cm2, 97.47 kg/cm2, and 256.73 kg/cm2.
Synthesis of Fluorescent Carbon Dots from Soybean Residuals Using Hydrothermal Method Ayu, Dinda G.; Gea, Saharman; Andriayani, Andriayani; Goei, Ronn
Jurnal Akademika Kimia Vol. 12 No. 2 (2023)
Publisher : Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/j24775185.2023.v12.i2.pp71-77

Abstract

Soybean residuals are biowaste composed of carbon chains and amine groups bounded in peptide linkages. The component was identified through FTIR analysis which showed the vibration of the diamide bond (N=C=N) at wave number 2132cm-1. Owing to the existence of these components, soybean has the potential to be used as a precursor to synthesize carbon nano-material, such as Carbon Dots (C - Dots). In this study, the synthesis of C - Dots material from soybean residuals was carried out using the facile hydrothermal method at a temperature of 200 oC for 6 hours. Afterward, the as-synthesized C - Dots were analyzed for their optical property, structure, and morphology. Based on the analysis of the UV - Vis and photoluminescent spectra, C - Dots exhibited absorbance peaks of 292 nm and 301 nm in the UV light region, and fluorescence emission peaks of 468 nm, with blue luminescence characteristics. The observation was supported by the morphological analysis using the HR - TEM, C - Dots exist in a spherical shape with an average particle size of 3.467 nm and a lattice distance of 0.363 nm. Besides, the C - Dots exhibited a good quantum yield of 28.15 %. From the results of the analysis, it is known that the synthesis of C - Dots material has been successfully carried out with particle size < 10 nm.