Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Information System

Perbandingan Metode Peramalan ARIMA dan Single Exponential Smoothing pada Kasus Kejadian Demam Berdarah Dengue di Kota Semarang Fahmi, Amiq; Maurensa, Giacinta; Hadi, Heru Pramono; Hindarto, Aris Nur; Wibowo, Sasono; Sugiarto, Edi
JOINS (Journal of Information System) Vol. 8 No. 2 (2023): Edisi November 2023
Publisher : Fakultas Ilmu Komputer, Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/joins.v8i2.9335

Abstract

Demam berdarah dengue (DBD) merupakan masalah kesehatan yang signifikan di Indonesia, khususnya di Kota Semarang. Setiap tahunnya, terdapat tren peningkatan penderita demam berdarah. Jika pemangku kepentingan tidak melakukan tindakan dan kebijakan preventif, hal ini akan berdampak buruk pada kesehatan dan kesejahteraan masyarakat. Peramalan kasus di masa yang akan datang merupakan salah satu upaya pencegahan dan pengendalian penyakit DBD. Penelitian ini menggunakan teknik peramalan ARIMA dan Single Smoothing Exponential. Data time series yang digunakan adalah bulan Januari sampai dengan Desember 2022 berdasarkan kasus kejadian di tingkat kecamatan Kota Semarang. Hasil percobaan kedua metode tersebut kemudian dibandingkan untuk mencari hasil terbaik dalam memprediksi jumlah kasus DBD di Kota Semarang. Hasil penelitian menunjukkan bahwa metode ARIMA memberikan hasil terbaik, dengan nilai MSE dan MAE yang lebih kecil.
Implementation of Discrete Wavelet Transform and Directed Acyclic Graph SVM for Batik Pattern Recognition Sugiarto, Edi; Budiman, Fikri; Fahmi, Amiq; Sulistyono, MY Teguh; Rohmani, Asih
JOINS (Journal of Information System) Vol. 10 No. 1 (2025): Edisi Mei 2025
Publisher : Fakultas Ilmu Komputer, Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/joins.v10i1.12576

Abstract

Batik as a heritage of the ancestors of the Indonesian nation certainly needs to be preserved so that it continues to be recognized from generation to generation, one of which is by introducing the diversity of its patterns. Efforts to introduce batik patterns can be made, one of which is by implementing technology that can recognize batik patterns automatically based on batik patterns, namely pattern recognition technology. This study aims to optimize batik pattern recognition using the discrete wavelet transform (DWT) and directed acyclic graph SVM (DAGSVM) methods. The stages start from preprocessing, feature extraction, and classification. The study used 310 batik images of 7 different patterns and divided into 240 images for training data and 70 for testing data. DWT method is used in the feature extraction stage while DAG SVM is used in the classification stage. The study was conducted by comparing the accuracy between standard DAG SVM and DAG SVM that has been optimized with DWT and the results of the accuracy test can be proven that adding the DWT method with DAG SVM can increase accuracy by 3%.