Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : MIND (Multimedia Artificial Intelligent Networking Database) Journal

Implementasi Extra Trees Classifier dengan Optimasi Grid Search CV pada Prediksi Tingkat Adaptasi AINA, LISTYA NUR; NASTITI, VINNA RAHMAYANTI SETYANING; ADITYA, CHRISTIAN SRI KUSUMA
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 9, No 1 (2024): MIND Journal
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v9i1.78-88

Abstract

AbstrakTeknologi terus maju, terutama dalam komunikasi, pendidikan, dan informasi. Pendidikan online semakin diminati di banyak lembaga pendidikan, mendorong perlunya pemahaman sejauh mana peserta didik dapat beradaptasi dengan lingkungan online. Memprediksi tingkat adaptasi peserta didik menjadi penting untuk meningkatkan efektivitas dan kualitas pengalaman belajar. Dalam penelitian ini, menggunakan dataset dari Kaggle, metode Extra Trees Classifier dioptimalkan dengan Hyperparameter Tuning Grid Search CV. Sebelum optimalsi, akurasi mencapai 95.85%, setelahnya meningkat menjadi 96.26%, menunjukkan peningkatan sebesar 0.41%. Implementasi metode Extra Trees Classifier dengan optimasi Hyperparameter Tuning Grid Search CV lebih unggul dibandingkan penggunaan algoritma tanpa optimasi.Kata kunci: Prediksi, Extra Trees, Classifier, Hyperparameter, CVAbstractTechnology continues to advance, especially in communication, education and information. Online education is increasingly in demand in many educational institutions, prompting the need to understand the extent to which learners can adapt to the online environment. Predicting learners' adaptation level is important to improve the effectiveness and quality of the learning experience. In this study, using a dataset from Kaggle, the Extra Trees Classifier method was optimized with Hyperparameter Tuning Grid Search CV. Before optimization, the accuracy reached 95.85%, after which it increased to 96.26%, showing an improvement of 0.41%. The implementation of the Extra Trees Classifier method with Hyperparameter Tuning Grid Search CV optimization is superior to the use of the algorithm without optimization.Keywords: Prediction, Extra Trees, Classifier, Hyperparameter, CV
Klasifikasi Penyakit Stunting Menggunakan Algoritma Multi-Layer Perceptron ASHURI, PUTRI INTAN; CAHYANI, INDAH ARDHIA; ADITYA, CHRISTIAN SRI KUSUMA
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 9, No 1 (2024): MIND Journal
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v9i1.52-63

Abstract

AbstrakStunting adalah gangguan pertumbuhan dan perkembangan yang disebabkan kekurangan gizi yang ditandai dengan tinggi anak kurang dari dua kali standar deviasi yang ditetapkan oleh WHO. Kekurangan asupan gizi mengakibatkan menurunnya pertumbuhan anak, hal ini berhubungan dengan meningkatnya resiko sakit, kematian, hambatan pertumbuhan fisik maupun gangguan metabolisme tubuh. Beberapa metode telah dilakukan untuk membantu mengklasifikasi stunting pada anak salah satunya C4.5. Tujuan penelitian ini adalah mengklasifikasikan penyakit stunting menggunakan metode Multi-Layer Perceptron (MLP) dengan hyperparameter tuning RandomSearchCV. MLP memiliki beberapa kelebihan diantaranya mampu merepresentasikan hubungan lebih kompleks antara fitur input dan output, serta memproses data dalam berbagai bentuk, termasuk data tidak terstruktur. Penelitian ini menunjukan model MLP menggunakan hyperparameter tuning RandomSearchCV mendapatkan performa terbaik berdasarkan hasil evaluasi didapatkan accuracy sebesar 81.78%, precision 85.00%, recall 94.34%, dan F1-Score 89.43%.Kata kunci: Stunting, Kekurangan gizi, Multi-Layer Perceptron (MLP), Hyperparameter tuning, RandomSearchCVAbstract Stunting is a growth and development disorder caused by malnutrition which is characterized by a child's height being less than twice the standard deviation set by WHO. Lack of nutritional intake results in decreased growth in children, this is associated with an increased risk of illness, death, physical growth restrictions and metabolic disorders. Several methods have been used to help classify stunting in children, one of which is C4.5. The aim of this research is to classify stunting using the Multi-Layer Perceptron (MLP) method with RandomSearchCV hyperparameter tuning. MLP has several advantages, including being able to represent more complex relationships between input and output features, as well as processing data in various forms, including unstructured data. This research shows that the MLP model using RandomSearchCV hyperparameter tuning got the best performance based on the evaluation results, which obtained accuracy of 81.78%, precision of 85.00%, recall of 94.34%, and F1-Score of 89.43%.Keywords: author’s guideline, document’s template, format, style, abstract