Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Feature extraction with mel scale separation method on noise audio recordings Roy Rudolf Huizen; Florentina Tatrin Kurniati
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 2: November 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i2.pp815-824

Abstract

This paper focuses on improving the accuracy of noise audio recordings. High-quality audio recording, extraction using the mel frequency cepstral coefficients (MFCC) method produces high accuracy. While the low-quality is because of noise, the accuracy is low. Improved accuracy by investigating the effect of bandwidth on the mel scale. The proposed improvement uses the mel scale separation methods into two frequency channels (MFCC dual-channel). For the comparison method using the mel scale bandwidth without separation (MFCC single-channel). Feature analysis using k-mean clustering. The data uses a noise variance of up to -16 dB. Testing on the MFCC single-channel method for -16 dB noise has an accuracy of 47.5%, while the MFCC dual-channel method has an accuracy better of 76.25%. The next test used adaptive noise-canceling (ANC) to reduce noise before extraction. The result is that the MFCC single-channel method has an accuracy of 82.5% and the MFCC dual-channel method has an accuracy better of 83.75%. High-quality audio recording testing for the MFCC single-channel method has an accuracy of 92.5% and the MFCC dual-channel method has an accuracy better of 97.5%. The test results show the effect of mel scale bandwidth to increase accuracy. The MFCC dual-channel method has higher accuracy.
The object detection model uses combined extraction with KNN and RF classification Kurniati, Florentina Tatrin; Manongga, Daniel HF; Sembiring, Irwan; Wijono, Sutarto; Huizen, Roy Rudolf
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 1: July 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i1.pp436-445

Abstract

Object detection plays an important role in various fields. Developing detection models for 2D objects that experience rotation and texture variations is a challenge. In this research, the initial stage of the proposed model integrates the gray-level co-occurrence matrix (GLCM) and local binary patterns (LBP) texture feature extraction to obtain feature vectors. The next stage is classifying features using k-nearest neighbors (KNN) and random forest (RF), as well as voting ensemble (VE). System testing used a dataset of 4,437 2D images, the results for KNN accuracy were 92.7% and F1-score 92.5%, while RF performance was lower. Although GLCM features improve performance on both algorithms, KNN is more consistent. The VE approach provides the best performance with an accuracy of 93.9% and an F1-score of 93.8%, this shows the effectiveness of the ensemble technique in increasing object detection accuracy. This study contributes to the field of object detection with a new approach combining GLCM and LBP as feature vectors as well as VE for classification.