Christin Rina Ratri, Christin Rina
Research Center for Physics, Indonesian Institute of Sciences, Kawasan Puspiptek Serpong Gd. 442 Tangerang Selatan 15314, Banten

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Perubahan Fasa Dalam Pembuatan Serbuk LiFePO4 Dengan Tiga Tahap Perlakuan Panas Tanpa Pelapisan Karbon [Phase Change In LiFePO4 Powder Making With Three Step Heat Treatment Non-Carbon Coating] Purawiardi, R. Ibrahim; Ratri, Christin Rina; Suwandi, Endang
Metalurgi Vol 31, No 1 (2016): Metalurgi Vol. 31 No. 1 April 2016
Publisher : Pusat Penelitian Metalurgi dan Material - LIPI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1149.529 KB) | DOI: 10.14203/metalurgi.v31i1.95

Abstract

LiFePO4 is one of the cathode active materials for lithium-ion batteries. This study aimed to synthesize LiFePO4 active material powder without carbon coating using three-step heat treatment i.e. first calcination with 700 °C temperature for about 2 h, second calcination with 800 °C temperature for about 8 h, and sintering using activated carbon pellets with 800 °C for about 4 h. The raw materials are LiOH.H2O, Fe2O3, and H3PO4. The first calcination produced precursor which consists of Li3PO4 and Fe2O3, with Fe2O3 as a dominant phase. The second calcination produced precursor which consists of Li3Fe2(PO4)3 and Fe2O3, with Li3Fe2(PO4)3 as a dominant phase. The sintering process produced LiFePO4 as a final powder product.  There is Li3PO4 – Li3Fe2(PO4)3 – LiFePO4 phase transformation during three-step heat treatment. The final product i.e. LiFePO4 has a Pnma space group. It is indicated that LiFePO4 has an olivine structure. The olivine structure is a structure that uses for lithium-ion cathode material. Activated carbon pellets did not react during final sintering process, so that it did not make a carbon coating on LiFePO4 morphology. According to the results, we can conclude that this method can be used for synthesizing lab-scale LiFePO4without carbon coating.. AbstrakLiFePO4 merupakan material yang digunakan sebagai bahan aktif katoda pada aplikasi baterai lithium-ion. Studi awal ini dilakukan untuk mensintesis serbuk bahan aktif LiFePO4 tanpa pelapisan karbon dengan metode tiga tahap perlakuan panas yaitu kalsinasi pertama dengan temperatur 700 oC selama 2 jam, kalsinasi kedua dengan temperatur 800 oC selama 8 jam, dan sinter menggunakan penstabil fasa tablet karbon aktif dengan temperatur 800 oC selama 4 jam. Bahan-bahan baku yang digunakan dalam sintesis ini adalah LiOH.H2O, Fe2O3, dan H3PO4. Kalsinasi pertama menghasilkan prekursor yang memiliki komposisi Fe2O3 dan Li3PO4 dengan fasa Fe2O3 yang lebih dominan. Kalsinasi kedua menghasilkan prekursor yang memiliki komposisi Li3Fe2(PO4)3 dan Fe2O3 dengan fasa Li3Fe2(PO4)3 yang lebih dominan. Sementara proses sinter menghasilkan serbuk material aktif LiFePO4. Dengan demikian terjadi transformasi fasa dalam tiga tahap perlakuan panas yaitu dari Li3PO4 menjadi Li3Fe2(PO4)3 kemudian menjadi LiFePO4. Fasa akhir LiFePO4 memiliki grup ruang Pnma yang berarti berstruktur olivine. Struktur olivine ini yang digunakan sebagai bahan aktif katoda baterai lithium-ion. Tablet karbon aktif tetap utuh setelah sintesis, sehingga tidak bereaksi dan membentuk pelapisan karbon pada serbuk LiFePO4. Dengan demikian, metode ini dapat digunakan untuk mensintesis LiFePO4 tanpa pelapisan karbon dalam lingkup skala laboratorium.
Synthesis of LiBOB Fine Powder to Increase Solubility Wigayati, Etty Marti; Lestariningsih, Titik; Ratri, Christin Rina; Purawiardi, Ibrahim; Prihandoko, Bambang
Makara Journal of Technology Vol. 21, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Lithium bis (oxalate) borate or LiBOB compound has captured interest of researchers, because it is potentially viable to be used as electrolyte salt in lithium-ion battery system. This compound is easy to synthesize and considered to be more environmentally friendly compared to conventional electrolyte salt because LiBOB does not contain halogen element. This research focused on the synthesis of LiBOB fine powder, which main purpose is improving LiBOB salt solubility in liquid electrolyte solution. This will aid the ion transfer between electrodes which in turn will increase the electrolyte performance. Solid state reaction was employed in this experiment. Synthesis of LiBOB compound was performed by reacting oxalic acid dihydrate, lithium hydroxide monohydrate, and boric acid. The resulting powder was then processed into fine powder using ball milling technique with varying milling time (0, 6, 10, and 13) hour. Microstructure of the sample was then analyzed to obtain information regarding phase formation, functional groups, grain surface morphology, surface area, pore volume, solubility, and ionic conductivity. The analysis shown that LiBOB and LiBOB hydrate phase was formed during the reaction, there was no changed in existing phase during milling process, crystallinity index was shifted to lower value but there was no difference in functional groups. Highest value in surface area was found to be 83.11 m2/g, with pore volume of 1.21311e+02 A at 10 hours milling. Smaller powder size resulted in higher solubility, unfortunately the ionic conductivity was found to be decreased.
The Effect of Ionic Liquid and Lithium Salt Electrolyte Addition on The Characteristics of Polyvinyl Alcohol/Chitosan-Based Membranes Handika, Rudi Satya; Ratri, Christin Rina; Rohib, Rohib; Nugraha, Adam Febriyanto
Jurnal Sains Materi Indonesia Vol. 26 No. 2 (2025): Jurnal Sains dan Materi Indonesia
Publisher : BRIN Publishing (Penerbit BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/jsmi.2025.5011

Abstract

The development of an environmentally friendly polymer electrolyte membrane for lithium-ion batteries is essential. A composite membrane composed of chitosan and polyvinyl alcohol (PVA) is one of the eco-friendly polymer membrane types used for lithium-ion battery electrolyte. This study examined the effect of ionic liquid 1-hexyl-3-methylimidazolium iodide (HMII) and lithium bis(oxalate) borate (LiBOB) electrolyte addition on the characteristics of composite membranes made of chitosan and PVA. The results reveal that the addition of LiBOB and HMII was able to promote the agglomerations and the formation of microcrystals, which increased the mechanical properties and ionic conductivities of the membranes. The membrane sample with LiBOB composition of 25% produced the highest mechanical properties with tensile strength of 21.11 MPa and elastic modulus of 1.93 MPa. The membrane sample with LiBOB composition of 10% without the addition of HMII produced the highest ionic conductivity, namely 5.17 x 10-6 S/cm.