Claim Missing Document
Check
Articles

Found 17 Documents
Search

RANCANG BANGUN SISTEM INFORMASI PENDAFTARAN PROGRAM AYO MENGHAFAL DAN MEMAHAMI AL-QURAN (AMMA) DI YAYASAN IHYAUL QURAN INDONESIA Milyun Ni’ma Shoumi; Arie Rachmad Syulistyo; Annisa Puspa Kirana; Mamluatul Hani’ah
Jurnal Pengabdian kepada Masyarakat Vol. 10 No. 2 (2023): JURNAL PENGABDIAN KEPADA MASYARAKAT 2023
Publisher : P3M Politeknik Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/abdimas.v10i2.4844

Abstract

Sistem informasi (SI)cadalah salah satu faktor yang penting bagi sebuah instansi yang bergerak di bidang pendidikan. SI memungkinkan instansi untuk lebih produktif dalam memperoleh, memproses, dan menggunakan informasi secara akurat. Salah satu jenis sistem informasi yang dapat membantu proses operasional sebuah instansi di bidang pendidikan adalah Sistem Informasi Pendaftaran untuk program-program yang diselenggarakan oleh lembaga pendidikan. Yayasan Ihyaul Quran merupakan salah satu jenis yayasan pendidikan di Kota Malang yang memiliki beberapa program, diantaranya Program Pendidikan Sekolah Balita, Tahfidz Quran, Kursus Quran, Kuttab Ibadurrahman, dan Ayo Menghafal dan Memahami Al-Quran (AMMA). Saat ini dalam proses pendaftarannya, khususnya program AMMA masih dilakukan secara manual. Kegiatan PKM ini mengusulkan sebuah pengembangan aplikasi dan pelatihan Sistem Informasi Pendaftaran Program Ayo Menghafal dan Memahami Al-Quran (AMMA) di Yayasan Ihyaul Quran Indonesia. Dengan adanya sistem ini diharapkan dapat memudahkan calon peserta dalam melakukan pendaftaran, dan juga memudahkan admin program dalam melakukan pengelolaan data calon peserta.
STUDENT ACADEMIC PERFORMANCE PREDICTION FRAMEWORK WITH FEATURE SELECTION AND IMBALANCED DATA HANDLING Wijayaningrum, Vivi Nur; Kirana, Annisa Puspa; Putri, Ika Kusumaning
Jurnal Ilmiah Kursor Vol. 12 No. 3 (2024)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/kursor.v12i3.356

Abstract

Various factors cause the low scores of students in practicum courses. If these factors cannot be identified, more and more students will drop out of the study due to low scores, especially Vocational College students who do not have the opportunity to improve their scores in the short semester. Students with the potential to drop out must be identified as soon as possible because the number of dropouts can have an impact on a university's accreditation value. In this study, the prediction of student academic performance was carried out using a framework consisting of imbalanced data handling using SMOTE and feature selection using Random Forest, as well as the application of Multi-Layer Perceptron (MLP) for the formation of a classification model. The MLP architecture consists of some neurons in the input layer, two hidden layers with five neurons each, and two neurons in the output layer. SMOTE succeeded in selecting ten significant parameters from 22 initial parameters, which produced the most accurate predictions. According to the test results, the proposed framework offers the best accuracy of 0.8889 and an F1-Score of 0.9032. These results prove that the proposed framework can be used as an alternative for the Department to take action to prevent students from dropping out.
Spatio-Temporal Pattern Analysis of Forest Fire in Malang based on Remote Sensing using K-Means Clustering Kirana, Annisa Puspa; Astiningrum, Mungki; Vista, Candra Bella; Bhawiyuga, Adhitya; Amrozi, Aris Nur
International Journal of Multidisciplinary: Applied Business and Education Research Vol. 4 No. 8 (2023): International Journal of Multidisciplinary: Applied Business and Education Rese
Publisher : Future Science / FSH-PH Publications

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11594/ijmaber.04.08.37

Abstract

Forest and land fire significantly impact the balance of the environment, such as haze pollution, destruction of ecosystems, the high release of carbon in the air, deterioration of health, and losses in various other fields. Based on these factors, developing an early warning system is essential to prevent forest fires, especially in forest and land areas. One of the data that can be used to monitor areas where there are frequent fires is hotspot data taken from the NASA MODIS Fire satellite. Data mining techniques are carried out to process the hotspot data so that the distribution of hotspot swarms is obtained. The data on the distribution of the clustering of hotspots are used to detect areas that are prone to fire from year to year. This study used the K-Means clustering algorithm. The data used in this study is hotspot data from Malang District, Indonesia. The range of hotspot data from January 2018 to June 2022. We use Silhouette coefficient testing to get the best number of classes in the cluster—this study's most recent application of the K-means clustering method to analyze hotspot distribution in a spatial-temporally. We use hotspot data in Malang's forest and land area using hotspot confidence levels >80%.
Pengembangan Aplikasi Dan Pelatihan Sistem Informasi TPQ Madinah Ma’arif 10 An-Nur Kota Malang Wakhidah, Rokhimatul; Affandi, Luqman; Shoumi, Milyun Ni'ma; Kirana, Annisa Puspa; Hormansyah, Dhebys Suryani; Arief, Sofyan Noor
DIKEMAS (Jurnal Pengabdian Kepada Masyarakat) Vol 6 No 1 (2022)
Publisher : Politeknik Negeri Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Advances in information technology have a major impact on the use of technology in various fields, one of which is education. Information technology is used as a means to simplify the teaching and learning process to the management of educational institutions. Almost all educational institutions have utilized information technology, one of which is the application of an integrated information system to handle administrative affairs of educational institutions. TPQ Madinah Ma'arif 10 An-Nur is one of the TPQ that has implemented advances in information technology. This is reflected in the use of value input information systems and the printing of student report cards. Over time, this feature has not met the needs of the management in carrying out TPQ operational activities. TPQ institutions do not yet have a system that handles the presence of students. And there is no system that handles the recording of payments
Penerapan Sistem Informasi Administratif Desa Ngijo Kabupaten Malang menggunakan OpenSID Rahmad, Cahya; Sumari, Arwin Datumaya Wahyudi; Kirana, Annisa Puspa; Abdullah, Moch Zawaruddin; Sukmana, Septian Enggar
Bhakti Persada Jurnal Aplikasi IPTEKS Vol. 8 No. 1 (2022): Bhakti Persada Jurnal Aplikasi IPTEKS
Publisher : Unit Publikasi Ilmiah, P3M, Politeknik Negeri Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31940/bp.v8i1.1-8

Abstract

Administrasi kependudukan merupakan rangkaian kegiatan penataan dan penertiban dokumen dan data kependudukan serta pendayagunaan hasilnya untuk pelayanan publik dan pembangunan sektor lain. Desa Ngijo adalah salah satu desa unggulan yang ada di Kabupaten Malang. Kantor Desa Ngijo yang berada di Kabupaten Malang merupakan salah satu instansi pemerintah yang bergerak di bidang pelayanan masyarakat, namun dalam kinerja pelayanan masyarakat Balai Desa ini memiliki kendala dan permasalahan yaitu belum adanya ketersedian sistem informasi yang dapat menangani administrasi kependudukan. Desa Ngijo sebagai salah satu instansi pemerinatahan, memiliki peran yang penting yaitu sebagai pengelola data kependudukan di tingkat desa. Pengelolaan data kependudukan di Desa Ngijo saat ini masih belum memaksimalkan penggunaan teknologi informasi untuk pengelolaannya, sehingga masih terdapat beberapa kekurangan dan kendala yang dihadapi. Seperti masih terdapat kerangkapan data kependudukan, kesulitan dalam pencarian data, serta pembuatan laporan kependudukan. Sehingga pelayanan kepada masyarakat serta kerja dari perangkat desa menjadi kurang efektif dan efisien. Oleh karena itu dibutuhkan sebuah sistem informasi terkomputerisasi yang dapat digunakan untuk mengelola data tersebut. Metode yang digunakan untuk perancangan sistem administrasi kependudukan yaitu dengan metode prototyping. Dengan adanya sistem informasi administrasi kependudukan yang berbasiskan website ini, dapat memudahkan pengelolaan data kependudukan. Hal ini terwujud dalam persepsi dari 98% peserta pelatihan yang menyatakan bahwa sistem ini akan menjadi komponen layanan yang sangat bermanfaat bagi warga desa.
Detection of Indonesian Hoax Content about COVID-19 Vaccine using Naive Bayes Multinomial Method Kirana, Annisa Puspa; Prasetyo, Gunawan Budi; Lestari, Ela Widya
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 5 No. 1 (2023): February
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v5i1.166

Abstract

One media currently famously used in all worlds is Twitter. The ease of dissemination and the exchange of information is accelerating. Every day, millions of tweets exist using various information, such as politics, technology, sports, academics, and others. The information that is widely found is about COVID-19-19 nowadays. The information on Twitter is not entirely accurate or according to facts and needs to be proven true. Therefore, this study aims to try to detect the information contained in Indonesia using methods of Naive Bayes Multinomial by using the Information Gain feature selection. This research contributes to utilizing data spread on Twitter and social media in detecting hoaxes spread in the community, primarily related to COVID-19 infections. The classification process is carried out by crawling tweets, preprocessing, then using feature selection, namely Information Gain, and classification using the Multinomial Naive Bayes method. Meanwhile, the validation needs in this study use k-fold cross-validation where the existing dataset is divided into training and testing data that will be tested with a confusion matrix. Researchers have carried out the confusion matrix testing process using 720 datasets divided as train data & the test data received an average accuracy value of 81.39%, precision of 80.36%, and recall of 79.73%. The highest accuracy is using k-fold two. The accuracy value reaches 88.8%, the precision value is 79.1%, and the recall value is 86.3%. The lowest accuracy was obtained on the 8th k-fold with an accuracy value of 73.6%, a result precision of 75.4%, and a recall of 86.9%.
Novel Coronavirus Pandemic in Indonesia: Cases Overview and Daily Data Time Series using Naïve Forecast Method Kirana, Annisa Puspa; Bhawiyuga, Adhitya
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 3 No. 1 (2021): February
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v3i1.198

Abstract

At the end of December 2019, the virus emerges from Wuhan, China, and resulted in a severe outbreak in many cities in China and expanding globally, including Indonesia. Indonesia is the fourth most populated country globally. As of February 2021, Indonesia in the first rank of positive cases of COVID-19 in Southeast Asia, number 4 in Asia, and number 19 in the world. Our paper aims to provide detailed reporting and analysis of the COVID-19 case overview and forecasting that have hit Indonesia. Our time-series dataset from March 2020 to January 2021. Summary of cases studied included the number of positive cases and deaths due to COVID-19 on a daily or monthly basis. We use time series and forecasting analysis using the Naïve Forecast method. Naïve forecast is one of the simplest forecasting methods, and it is very useful to be considered as a benchmark method for comparing models. The prediction is daily case prediction for six months starting from February 1, 2021, to June 30, 2021, using active cases daily COVID-19 data in all provinces in Indonesia. The highest monthly average case prediction is in June, which is 35,662 cases. Our COVID-19 prediction study has a mean absolute percentage error (MAPE) score of 15.85%.