Claim Missing Document
Check
Articles

Found 28 Documents
Search

Keamanan Jaringan Pada Sistem Pakar Diagnosa Penyakit Ibu Hamil Menggunakan Metode Forward Chaining Dan Algoritma Affine Cipher (Studi Kasus Klinik Fatimah Medika Fajar Yulian Siska Utama; Muchamad Kurniawan; Siti Agustini
Prosiding Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika (SNESTIK) 2022: SNESTIK II
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (668.267 KB) | DOI: 10.31284/p.snestik.2022.2905

Abstract

Data security is the most important part of a system., particularly in supporting information security at institutions both public and private because it can guarantee the security of messages that will be given to the intended person or institution. Basically, data can be classified into public data and private data. Public data means data that can be accessed by many people, while private data can only be accessed by people who have access. Therefore, encryption is needed to keep the secrecy of data or information. Fatimah Medika Clinic is a heart clinic that servers treatment and health checks. The clinic, which is located at Terungkulon Road, Krian, Sidoarjo. In this final project, we discuss cryptography using the Affine Cipher algorithm. This algorithm is a development of Caesar algorithm using twho keys. This application could perform the encryption and decryption processes on patient data saved in the system. The retrieval of two keys in the Affine Cipher algorithm occurred automatically by taking the patien’s date and month of birth into account. The results of tests on 100 data sets in which each character had the size of 3 to 12 letters yielded an average Mean Square Error (MSE) value of 9,272 abd a Peak Signal to Noise Ratio (PSNR) value of 7,379. Accordingly, by implementing the Affine Cipher algorithm into the application, we can save information from anyone without it being readable by others.
Sistem Pembelajaran Interaktif Menggunakan Cloud Computing Berbasis Client-Server di Jurusan Teknik Informatika ITATS Dhiyas Rakha Allam Allam; Danang Haryo Sulaksono; Citra Nurina Prabiantissa; Gusti Eka Yuliastuti; Siti Agustini
Prosiding Seminar Nasional Sains dan Teknologi Terapan 2022: Energi Terbarukan dan Keberlanjutannya di Berbagai Sektor
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kegiatan belajar mengajar merupakan kegiatan yang sering dilakukan oleh sebuah kampus. Namun, di masa pandemi ini kegiatan belajar mengajar ini sedikit terhambat. Hal ini disebabkan karena adanya kebijakan pemerintah dengan adanya lockdown ataupun PPKM sebagai langkah untuk mengurangi penyebaran Covid-Salah satu solusi dari permasalahan tersebut adalah mengimplementasikan jaringan client-server pada sistem pembelajaran interaktif berbasis cloud computing. Aplikasi yang tersedia pada cloud computing dapat diakses melalui internet. Sistem ini dapat membantu dosen dan mahasiswa untuk dapat mengadakan kegiatan belajar mengajar tanpa harus bertatap muka secara langsung. Dari pengujian sistem jaringan menggunakan quality of service (QoS) yang terdiri dari empat parameter yaitu throughput, packet loss, delay dan jitter, sistem pembelajaran interaktif yang telah dibuat termasuk dalam kategori sangat baik. Jaringan client-server pada sistem pembelajaran interaktif menggunakan cloud computing  mampu membantu dosen dan mahasiswa dalam mengadakan kegiatan belajar mengajar tanpa harus bertatap muka secara langsung, mampu memberi kemudahan bagi dosen untuk membagikan materi mata pelajaran.
Perbandingan SVM dan Perceptron dengan Optimasi Heuristik Kurniawan, Muchamad; Hakimah, Maftahatul; Agustini, Siti
Jurnal Telematika Vol. 15 No. 2 (2020)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v15i2.356

Abstract

Support Vector Machine (SVM) and Perceptron are methods used in machine learning to determine classification. Both methods have the same motivation, namely to get the dividing line (hyperplane). Hyperplane can be obtained by using the optimization method Gradient Descent (GD), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO). This study compares machine learning methods (Support Vector Machine and Perceptron) to optimization methods (Gradient Descent, Genetic Algorithm, and Particle Swarm Optimization) to find hyperplane. The dataset used is Iris Flower obtained from the UCI Machine Learning Repository. The test parameter on the Perceptron is the learning rate, while the optimization algorithm (GA and PSO) is the number of individuals. The results showed that the most suitable optimization method for Perceptron and SVM is PSO, with an accuracy value of 93%. Support Vector Machine (SVM) dan Perceptron merupakan metode yang digunakan dalam machine learning untuk penentuan klasifikasi. Kedua metode tersebut memiliki motivasi yang sama, yaitu untuk mendapatkan garis pemisah (hyperplane). Hyperplane bisa didapatkan dengan metode optimasi Gradient Descent (GD), Genetic Algorithm (GA), dan Particle Swarm Optimization (PSO). Penelitian ini membandingkan metode machine learning (Support Vector Machine dan Perceptron) terhadap metode optimasi (Gradient Descent, Genetic Algorithm, dan Particle Swarm Optimization) untuk menemukan hyperplane. Dataset yang digunakan adalah Iris Flower yang diperoleh dari UCI Machine Learning Repository. Parameter pengujian pada Perceptron adalah learning rate, sedangkan pada algoritme optimasi (GA dan PSO) adalah jumlah individu. Hasil penelitian menunjukkan bahwa metode optimasi yang paling cocok untuk Perceptron dan SVM adalah PSO, dengan nilai akurasi 93%.
Implementasi Algoritma Caesar Cipher dan Rivest Shamir Adleman Super Enkripsi Teks Pesan dengan Karakter Ascii Fahrezi Kusuma, Andra; Agustini, Siti; Hakimah, Maftahatul; Kurniawan, Muchamad
Prosiding Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika (SNESTIK) 2024: SNESTIK IV
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/p.snestik.2024.5714

Abstract

Humans are never separated from information needs when viewed from technology use. Data security is important because it relates to confidentiality, integrity, authentication, and privacy. Some information has privacy that the public should not share. Therefore we need a way to secure information so that the information does not spread widely to unauthorized parties. This study used Caesar Cipher and RSA Algorithms to secure a text message. So the data would not be easily hacked by irresponsible parties. The encryption process started using the Caesar Cipher Algorithm by entering a key/shift of letters to produce a ciphertext. Ciphertext Caesar is used for the encryption process for the second time using the RSA algorithm. RSA ciphertext result was converted into ASCII characters. The algorithm proposed to secure message text data using a combination of letters and numbers in each trial. The Caesar Cipher Algorithm implementation results obtained an average avalanche effect value of 35.03%. At the same time, the RSA algorithm obtained an average avalanche effect value of 55.10%. And the Caesar-RSA algorithm obtained an average avalanche effect value of 59.015%. The best test results were obtained by combining the two algorithms, Caesar Cipher and RSA, which showed that the proposed algorithm could secure message text data effectively.
Implementasi Mengamankan Pesan Teks Menggunakan Metode GOST (Gosundarstevenny Standard) Ritonga, Mario Franko Ezra Hasiholan; Kurniawan, Muchamad; Agustini, Siti
Prosiding Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika (SNESTIK) 2024: SNESTIK IV
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/p.snestik.2024.5713

Abstract

The increasing development of technology has made it easier for people to communicate with each other. Sometimes, some of the information sent must be kept confidential so that it is not misused by irresponsible people. This research deals with securing messages using the GOST method during information exchange. The output messages of chats converted into ciphertext served as the research materials. The research results indicated that the application to secure text messages successfully implemented encryption and decryption techniques through the GOST method. The more bit changes occurred, the more difficult the cryptographic algorithm was to solve.
Improving Students’ Grammar Skill Through Student Centered Learning at ITATS Agustini, Siti; Wardhani, Norita Prasetya; Amalina, Evy Nur
Jurnal Bahasa Inggris Vol 1 No 2 (2018)
Publisher : LPPM Universitas Pancasakti Tegal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24905/efj.v1i2.32

Abstract

English is an International language which is used by so many people to interact with people from other countries. Good English ability is needed by students to support learning process and working after the students graduate from university. Grammar is a point of language. By knowing and understanding correct grammar, so, their English is better. The aim of this research was to give proposal of English learning to improve students' grammar ability. The method used was students’ center learning using presentation in the class. The materials were simple present and perfect, future simple tense, modal, comparative, and passive voice. This research was conducted on 33 students in ITATS. The result of this research was 87% of students got to increase score for post-test and 30% of students passed the score. Thus, students’ center learning method was effective to increase students' grammar ability.
Improving Students’ Grammar Skill Through Student Centered Learning at ITATS Agustini, Siti; Wardhani, Norita Prasetya; Amalina, Evy Nur
Jurnal Bahasa Inggris Vol 1 No 2 (2018)
Publisher : LPPM Universitas Pancasakti Tegal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24905/efj.v1i2.32

Abstract

English is an International language which is used by so many people to interact with people from other countries. Good English ability is needed by students to support learning process and working after the students graduate from university. Grammar is a point of language. By knowing and understanding correct grammar, so, their English is better. The aim of this research was to give proposal of English learning to improve students' grammar ability. The method used was students’ center learning using presentation in the class. The materials were simple present and perfect, future simple tense, modal, comparative, and passive voice. This research was conducted on 33 students in ITATS. The result of this research was 87% of students got to increase score for post-test and 30% of students passed the score. Thus, students’ center learning method was effective to increase students' grammar ability.
Pemodelan Dataset Tambang Terbuka pada PT. United Tractors Semen Gresik dengan Metode Artificial Neural Network Kurniawan, Muchamad; Fanani, Yazid; Agustini, Siti; Wachid, Aldi
PROMINE Vol 12 No 1 (2024): PROMINE
Publisher : Program Studi Teknik Pertambangan, Fakultas Sains dan Teknik, Universitas Bangka Belitung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33019/jp.v12i1.3311

Abstract

The Mining industry in Indonesia plays a vital role as a source of state income and an integral part of the industrial progress of the nation. The majority of the mining industry in Indonesia employs open-pit mining. One of the weather factors that can be an obstacle in open-pit mining is rainfall. Therefore, this research focused on modelling data from rainfall, working hours and production outcomes. It applied the Artificial Neural Network algorithm with an input layer consisting of two neurons, a hidden layer with two neurons, and an output layer. The data on Rainfall working hours, and production results were trained to produce a model that, later on, will be used to predict the value of production results. For model testing, this study uses two parameters, namely learning rate and epoch. From 90 times of testing, the best model was obtained with a learning rate value of 0.3 and an epoch of 1000 which resulted in an RMSE error of 0.004838259401280330