Claim Missing Document
Check
Articles

Found 17 Documents
Search

Pengaruh Penambahan Nano Zinc Oxide dan Nano Graphite pada Aluminium Alloy 6061 melalui Proses Pengadukan GesekFriction Stir Processing terhadap Kekerasan Permukaan Bagas Kurniawan; Abdul Munir Hidayat Syah Lubis; Ngafwan Ngafwan; W. Setiyawan; Rosy Hilal Mahendra
Justek : Jurnal Sains dan Teknologi Vol 6, No 2 (2023): Juni
Publisher : Unversitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/justek.v6i2.14494

Abstract

Abstract:  This study aims to determine whether there is an effect of adding nano zinc oxide and nano graphite to aluminum alloy 6061 through the Friction Stir Processing (FSP) process on surface hardness and wear. The type of research used was quantitative using several tools and materials, namely FSP samples, FSP Chisels, HEM (High Energy Milling) Machines, Sitting Drilling Machines, FSP Machines, Hardness Tester Machines, SEM (Scanning Electron Microscopy) and Optical Microscopes. The results of this study were an increase in hardness after Zn and C application.Abstrak: Penelitian ini bertujuan untuk mengetahui ada tidaknya pengaruh penambahan nano zinc oxide dan nano graphite pada aluminium alloy 6061 melalui proses Friction Stir Processing (FSP) terhadap kekerasan dan keausan permukaan. Jenis penelitian yang digunakan adalah kuantitatif dengan menggunakan beberapaalat dan bahan yaitu sampel FSP, Pahat FSP, Mesin HEM (High Energy Milling), Mesin Bor Duduk, Mesin FSP, Mesin Hardness Tester, SEM (Scanning Electron Microscopy) dan Mikroskop Optikal. Hasil dari penelitian ini adalah terjadi peningkatan kekerasan setelah pemberian Zn dan C.
Pengaruh Penambahan Partikel Hexagonal Boron Nitride Dan Carbon Pada AA 7075 Melalui Proses Friction Stir Processing Terhadap Kekerasan Permukaan Rosy Hilal Mahendra; Abdul Munir Hidayat Syah Lubis; Ngafwan Ngafwan; W. Setiyawan; B. Kurniawan
Justek : Jurnal Sains dan Teknologi Vol 6, No 2 (2023): Juni
Publisher : Unversitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/justek.v6i2.14430

Abstract

Abstract:  reinforcement of AA 7075 material with nanoparticles may be developed. Therefore the authors wanted to conduct research on the effect of adding hexagonal boron nitride and coconut shell nano carbon particles to aluminum alloy 7075 through the friction stir processing (FSP) process on surface hardness and wear. Rpm to see a comparison of the speed of the mixture in aluminum, a mixture of hexagonal boron nitride particles and coconut shell nano carbon with the variants HBN25% : C75%, HBN50% : C50%, HBN75% : C25%. run the machine horizontally the process is repeated back and forth. The minimum hardness is 60.39 HRF 50% HBN material: C 50% rpm 2280, and the maximum hardness is 95.04 HRF 75% HBN material: C 25% rpm 2280. Pure 7075 aluminum is 90 HRF.Abstrak: Penguatan bahan AA 7075 dengan partikel nano melalui mungkin dapat dikembangkan. Oleh karena itu penulis ingin melakukan penelitian tentang pengaruh penambahan partikel hexagonal boron nitride dan nano carbon batok kelapa pada aluminium alloy 7075 melalui proses friction stir processing (fsp) terhadap kekerasan dan keausan permukaan.mesin fsp diatur speed dengan varian kecepatan 910, 1500, dan 2280 Rpm untuk melihat perbandingan dari speed terhadap campuran pada alumunium, campuran partikel hexagonal boron nitride dan nano Carbon batok kelapa dengan varian HBN25% : C75%, HBN50% : C50%, HBN75% : C25%. jalankan mesin secara horizontal proses diulang secara bolak balik.kekerasan minimum yaitu 60.39 HRF bahan HBN 50% : C 50% rpm 2280, dan kekerasan maksimum yaitu 95.04 HRF bahan HBN 75% : C 25% rpm2280. alumunium 7075 murni yaitu 90 HRF.
Implementation of Palm Oil Waste Nano Technology to Increase the Durability of Road Pavement Materials: Proposed Research Roadmap Sri Sunarjono; Ngafwan Ngafwan
Urecol Journal. Part E: Engineering Vol. 2 No. 1 (2022): January-June
Publisher : Konsorsium LPPM Perguruan Tinggi Muhammadiyah 'Aisyiyah (PTMA) Koordinator Wilayah Jawa Tengah - DIY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53017/uje.138

Abstract

Many road pavements using asphalt mixtures in Indonesia are found to be not durable, especially heavy traffic roads. Even road damage often occurs early before the service life is reached. Many efforts have been made to improve the strength and durability of the mixture, but have not been effectively. For example, the use of fillers can increase the strength and durability of the mixture significantly, but its performance at low temperatures has an impact on the risk of hardening and cracking. The research objective is to propose the idea of implementing nanotechnology for palm oil waste materials to increase the durability of road pavement materials based on the research roadmap developed. The method used is through five approaches, namely: (i) review of research results on the durability of road pavement materials, (ii) review of research results on the implementation of nanotechnology in road pavement materials, (iii) research gaps, (iv) research ideas, and, (v) proposed research roadmap. A research roadmap for the implementation of nanotechnology to improve the durability of road pavement materials has been prepared. The substance of the research roadmap proposes three ideas, namely maximizing the function of nanomaterials as: (i) anti-aging agent, (ii) protecting water infiltration into the body of the asphalt mixture, and (iii) bonding agent between asphalt-aggregate.
The impacts of nanoscale silica particle additives on fuel atomisation and droplet size in the internal combustion engines: A review Balikowa, Amuza; Effendy, Marwan; Ngafwan, Ngafwan; Wandera, Catherine
Applied Research and Smart Technology (ARSTech) Vol. 4 No. 2 (2023): Applied Research and Smart Technology
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/arstech.v4i2.2759

Abstract

The combustion process in compression ignition (CI) engines is complex and affects their efficiency and emission levels. Internal combustion engines (ICE) are being studied to find better ways to burn fuel and produce less pollution to meet the growing demand for these qualities. However, one intriguing avenue is the utilisation of nanoparticle additives, such as silica nanoparticles, to enhance fuel atomisation and droplet size. This study aimed to comprehensively review the impact of silica nanoparticle additives on fuel atomisation and droplet size in internal combustion engines. This review explores the researchers' underlying mechanisms and experimental techniques to determine nanoparticle fuel additives' overall impact on engine performance. The results achieved from the literature study indicated that incorporating these nanoparticles (following the engine design and fuel formulations) can enhance combustion efficiency and reduce exhaust emissions, thereby contributing to developing more sustainable transportation and power production systems.
ANALYSIS OF OIL CHARACTERISTICS FROM PYROLYSIS OF LOW DENSITY POLYETHYLENE (LDPE) PLASTIC WASTE IN A SMALL CAPACITY REACTOR Purnama, Ari; Effendy, Marwan; Ngafwan, Ngafwan
International Journal of Mechanical Engineering Technologies and Applications Vol. 5 No. 2 (2024)
Publisher : Mechanical Engineering Department, Engineering Faculty, Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/MECHTA.2024.005.02.10

Abstract

Plastic waste in Indonesia remains a significant unresolved issue, particularly due to the extensive use of plastic bags in the food sector, industry, and other areas, which adversely affects the environment. Addressing this, one effective approach is converting plastic waste into fuel oil through the pyrolysis process. The process involves preparing pyrolysis equipment and extracting oil by conducting laboratory tests on the properties of pyrolysis oil, including Gas Chromatography-Mass Spectrometry (GCMS), Fourier Transform Infrared (FTIR) spectroscopy, and droplet combustion tests. Pyrolysis is performed by heating plastic waste at temperatures ranging from 250°C to 400°C. This study focuses on pyrolysis oil derived from Low-Density Polyethylene (LDPE) plastic, which can be used as an alternative fuel. The results show that pyrolysis oil can be ignited with sparks at a heating temperature of 300°C, exhibiting a viscosity of 1.1378 cP and a calorific value of 10,965.2 cal/g.
Combustion characteristics of pyrolysis oil droplets from pyrolysis of polyethylene (PE) plastic waste Aji, Dody Bimo; Effendy, Marwan; Ngafwan, Ngafwan
Mechanical Engineering for Society and Industry Vol 5 No 1 (2025)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.12763

Abstract

Plastic waste is suspected to be a major contributor to environmental pollution, thus encouraging the need for innovative and effective management strategies to overcome it. Pyrolysis is considered an affordable way to process plastic waste, and even produce useful products in liquid form, which has the potential to be an alternative fuel in combustion engines. This study evaluated the combustion characteristics of pyrolysis oil derived from polyethylene (PE) plastic waste. The pyrolysis process was carried out under controlled conditions, at a furnace temperature of 250°C, a reactor temperature of 400°C, and a condenser temperature of 300°C, processing 1 kg of PE plastic waste. Temperature data was monitored every 10 minutes by installing several thermocouples. The pyrolysis process was able to produce 671 ml of liquid, which was later identified as plastic pyrolysis oil (PPO PE-11) and the rest in the form of residue reached 45 g. The results indicated that PPO PE-11 has a viscosity of 5.93 mm²/s, which is higher than diesel 3.8173 mm²/s. Meanwhile, its density is 0.779 kg/m³, which is slightly lower than diesel. The calorific value of PPO PE-11 is slightly higher than diesel, reaching 11,046.4 cal/g. The droplet scale combustion tests give a shorter ignition delay of 0.6 seconds at 41.28°C for PPO PE-11, compared to 1 second at 52.525°C for diesel, indicating its flammability.
Studi Sifat Optik Nanomaterial SiO2 dengan Spektroslopi UV-Vis Riza, Ramzul Irham; Ngafwan, Ngafwan
JURNAL CRANKSHAFT Vol 8, No 1 (2025): Jurnal Crankshaft Vol.8 No.1 (2025)
Publisher : Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24176/cra.v8i1.14462

Abstract

Daya serap gelombang terhadap setiap nano material mempunyai nilai yang berbeda-beda. Hal ini dipengaruhi oleh beberapa factor mulai dari struktur mikro, gugus fungsi dan jenis perlakuan yang diberikan kepada nano material tersebut. Salah satu material yang memiliki potensi untuk menyerap gelombang dengan baik adalah SiO2 yang sudah mendapatkan perlakuan panas. Material tersebut di proses menggunakan High Energy Milling (HEM) untuk mencapai ukuran nano. Dalam prosesnya  material yang akan direkayasa ukuranya dimasukkan kedalam tabung yang berputar dan menghasilkan gaya sentrifugal. Rekaya Nanomaterial saat ini berkembang dengan pesat dan berkembang kedalam banyak bidang seperti bidang rekayasa struktrur, kesehatan dan energy. Dibidang energi, nanomaterial sangat berperan penting karena mempunyai energi lebih besar dari pada material ukuran biasa karena memiliki surface area yang besar. Energy band secara bertahap berubah terhadap orbital molekul. Umumnya Resistivitas elektrik mengalami kenaikan dengan berkurangnya ukuran partikel untuk melihat pengaruh karakteristik nanomaterial terhada daya serap energy dapat dilakukan dengan menggunakan uji UV-Vis.  Spektroskopi UV-Visible (UV-Vis) mengukur penyebaran dan penyerapan cahaya yang melewati sampel. Nanopartikel memiliki sifat optik unik yang sensitif terhadap ukuran, bentuk, konsentrasi, keadaan aglomerasi, dan indeks bias di dekat permukaan nanopartikel, yang menjadikan UV-Vis alat yang berharga untuk mengidentifikasi, mengkarakterisasi, dan mempelajari material nano.