Claim Missing Document
Check
Articles

Found 2 Documents
Search

PENERAPAN METODE PROGRAM LINIER UNTUK MENENTUKAN PEMBERIAN DANA BANTUAN OPERASIONAL SEKOLAH Putra, Fitra Kasma
Journal of Technique Research (JTR) Vol 1 No 2 (2019): JURNAL JTR Volume 1 No. 2, April 2019
Publisher : rc-institut

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Dengan pemanfaatan teknologi komputer yang semakin luas maka terciptakan suatu sistem yang dapat membantu pihak manajerial dalam pengambilan keputusan. Sistem Penunjang Keputusan merupakan suatu sistem yang membantu pihak-pihak manajemen dalam menyelesaikan masalah yang bersifat semi terstruktur. Dengan menggunakan Sistem Penunjang Keputusan pihak manajemen dapat menentukan suatu keputusan yang diambilnya. Pada artikel ini penulis membahas mengenai penerapan metode program linier pada Sistem Pendukung Keputusan dalam menentukan siswa yang berhak menerima dana bantuan operasional sekolah, dengan adanya Sistem Penunjang Keputusan akan dapat mempermudah pihak sekolah dalam menentukan siswa mana yang lebih layak dalam menerima bantuan tersebut. Selain itu dengan mengunakan Sistem Penunjang Keputusan sekolah akan lebih cepat dalam pengolahan data yang berguna dalam pemberian bantuan dana Bantuan Operasional Sekolah (BOS) tersebut. Dana BOS atau Bantuan Operasional Sekolah adalah bantuan yang diberikan pemerintah untuk membantu pelaksanaan operasional sekolah seperti meliputi penyediaan buku paket bagi siswa, beasiswa bagi siswa yang tidak mampu dan berprestasi, penyediaan alat tulis dan alat pelengkapan dalam proses kegiatan belajar dan mengajar. Jadi untuk dapat membantu pihak sekolah dalam pengolahan data-data dan pengambilan keputusan dalam pengunaan dana BOS maka diperlukan suatu sistem yang dapat mendukung kinerja dari bagian administrasi sekolah agar bekerja secara optimal dan cepat.
Designing an Expert System for Evaluating Student Stress Levels: A Novel Instrument Using Backward and Forward Chaining Methods Fadriati, Fadriati; Masril, Masril; Muchlis, Lita Sari; Putra, Fitra Kasma; Mudinillah, Adam
AL-ISHLAH: Jurnal Pendidikan Vol 16, No 3 (2024): AL-ISHLAH: JURNAL PENDIDIKAN
Publisher : STAI Hubbulwathan Duri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35445/alishlah.v16i3.5466

Abstract

Academic stress is a problem that students often experience, especially when completing final studies such as writing a thesis. This research aims to develop an instrument for measuring students' academic stress levels based on an expert system using forward chaining and backward chaining methods. The research method used is research and development (RD) with a Borg and Gall design which includes 10 steps. These steps include: (1) Research and information collecting, (2) Planning, (3) Developing a preliminary form of the product, (4) Preliminary field testing, (5) Main product revision, (6) Main field testing, (7) Operational product revision, (8) Operational field testing, (9) Final product revision, and (10) Dissemination and implementation. By following these steps, the research ensures a systematic and thorough development process, leading to a reliable instrument for measuring academic stress. The data collection instrument was the Guttman model academic stress scale (SSA) with 48 valid and reliable items (rxy = 0.785). Data was obtained from 319 IAIN Batusangkar student respondents which were processed descriptively. The results showed that 34.8% of respondents experienced high levels of academic stress, 32.6% moderate, and 32.6% low. Furthermore, this research develops a web-based expert system application to detect students' academic stress levels by using forward chaining, which starts from data to reach a conclusion, and backward chaining, which starts from a goal to verify it with available data. These methods ensure accurate stress level assessments. Through this technological approach, the research provides a comprehensive solution for managing and reducing student academic stress effectively and efficiently, with findings showing that the expert system significantly improves early detection and personalized stress management strategies for students.