Claim Missing Document
Check
Articles

Found 3 Documents
Search

Analisa Tulangan pada Blok Angkur Jembatan Gantung dengan menggunakan Ansys Indra Jhon Fischer; Johannes Tarigan; Emma Patricia Bangun
Jurnal Syntax Transformation Vol 3 No 12 (2022): Jurnal Syntax Transformatin
Publisher : CV. Syntax Corporation Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46799/jst.v3i12.651

Abstract

The strength of the anchor block structure in the suspension bridge is very dependent on its weight to be able to bear the tensile load of the backstay cable. Therefore, it is necessary to have dimensions large enough to withstand the tensile force. Concrete has good compressive strength but does not have good tensile strength, the tensile strength of concrete is only about 10%-15% of its compressive strength. Therefore, in planning anchor blocks, anchor blocks are needed making of steel that has high yield and fracture stresses and is planted in anchor concrete blocks to withstand the force before the tensile stresses are transferred to the concrete blocks. In this paper, steel H 300.300.10.15 is used as steel anchors embedded in concrete blocks. The purpose of this study was to obtain the stress value that occurs in the anchor block using the Ansys assistance program, obtain the appropriate reinforcement distance in the maximum tensile area (critical area), and obtain a graphic description of the influence of the anchor structure geometry due to the load from the backstay cable. This research was conducted using a numerical study using the SAP 2000 assistance program to calculate the forces in the entire suspension bridge structure, then using the Ansys analysis assistance program to obtain the tensile stress that occurs in the anchor block which is also modeled in Ansys with boundary conditions that are close to the existing conditions in the field. The results of Ansys analysis show that the maximum tensile stress in H profile steel 300.300.10.15 is 73.27 MPa and the maximum tensile stress in concrete is 1.26 MPa. The value of 1.26 MPa is still within a safe limit because the tensile stress is still below the allowable tensile stress for the concrete of 2.23 MPa. From the results of empirical analysis, the maximum reinforcement space in the critical area is 150 mm, and in the non-critical area, it is 250 mm.
Analisis Pengaruh Perbedaan Jarak Kabel Backstay pada Jembatan Gantung Pejalan Kaki Fischer, Indra Jhon
JUITECH: Jurnal Ilmiah Fakultas Teknik Universitas Quality Vol 9, No 1 (2025): Vol 9 No 1 2025
Publisher : Universitas Quality

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36764/ju.v9i1.1654

Abstract

Penelitian ini bertujuan untuk menganalisis pengaruh perbedaan jarak kabel backstay terhadap kestabilan dan kinerja struktur jembatan gantung pejalan kaki. Objek penelitian adalah Jembatan Gantung Bah Kasindir di Kabupaten Simalungun, Sumatera Utara, dengan tiga model variasi: Model 1 (simetris), Model 2 (jarak kiri lebih pendek 10 cm), dan Model 3 (jarak kiri lebih panjang 5 m). Pemodelan dilakukan menggunakan perangkat lunak SAP2000 dan mengacu pada pedoman SE Menteri PU No. 02/SE/M/2010. Hasil analisis menunjukkan bahwa perbedaan jarak sekecil 10 cm dapat menyebabkan peningkatan gaya tarik kabel backstay, sedangkan perbedaan 5 m menyebabkan ketidakseimbangan gaya yang memengaruhi keseluruhan struktur. Meskipun lendutan masih dalam batas yang diizinkan, ketidakseimbangan gaya akibat jarak kabel yang tidak simetris dapat berdampak signifikan terhadap keamanan desain menara dan blok angkur. Oleh karena itu, ketelitian dalam pemasangan dan perencanaan kabel backstay sangat penting dalam menjamin keselamatan dan keandalan jembatan gantung.
Analisis Daya Dukung Aksial Dan Penurunan Pondasi Bored Pile Dengan Menggunakan Uji Beban Statik Dan Menggunakan Metode Elemen Hingga Pada Pembangunan Bri-Medan Mungkur, Bonar Lumsa; Roesyanto, Roesyanto; Harahap, Syiril Erwin; Fischer, Indra Jhon
Syntax Literate Jurnal Ilmiah Indonesia
Publisher : Syntax Corporation

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36418/syntax-literate.v10i7.60755

Abstract

This study analyzes the axial bearing capacity and settlement of a single bored pile foundation with a diameter of 80 cm used in the construction project of the BRI Tower, utilizing static load testing and the Finite Element Method (PLAXIS 3D program). Field data from the Standard Penetration Test (SPT) and cyclic loading test were compared with numerical simulations using the Mohr-Coulomb and Hardening Soil models. The ultimate axial compressive bearing capacity (Qu) of a single bored pile determined analytically using SPT data and the O’Neil and Reese equation is 454.5 tons. The ultimate axial bearing capacity (Qu) of a single bored pile based on loading test data interpreted using the Davisson method is 492.0 tons, the Mazurkiewich method is 464.0 tons, and the Chin method is 416.6 tons. Based on the Finite Element Method (PLAXIS 3D) using the Hardening Soil model, the ultimate axial bearing capacity interpreted using the Davisson method is 497.0 tons, the Mazurkiewich method is 482.0 tons, and the Chin method is 588.2 tons. Meanwhile, the ultimate axial bearing capacity based on the Finite Element Method (PLAXIS 3D) using the Mohr-Coulomb model is 445.0 tons by the Davisson method, 450.0 tons by the Mazurkiewich method, and 714.2 tons by the Chin method. Based on analytical calculations, load tests, and the Finite Element Method, the elastic settlement of a single bored pile was 18.85 mm analytically, 6.13 mm from the loading test, 8.15 mm from the PLAXIS 3D Mohr-Coulomb model, and 6.11 mm from the PLAXIS 3D Hardening Soil model. Overall, the settlements remain within the acceptable tolerance limit (25 mm). Recommendations include the potential for further development of this research by using other analysis software such as MIDAS. Furthermore, future updates to the axial bearing capacity testing standards are suggested, where analysis of foundation bearing capacity may be performed solely using the Finite Element Method (PLAXIS 3D) or other software.