Gaanty Pragas Maniam, Gaanty Pragas
Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia Central Laboratory, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysi

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

PREPARATION OF SPENT BLEACHING EARTH-SUPPORTED CALCIUM FROM LIMESTONE AS CATALYST IN TRANSESTERIFICATION OF WASTE FRYING OIL Hindryawati, Noor; Daniel, Daniel; Erwin, Erwin; Maniam, Gaanty Pragas
Jurnal Bahan Alam Terbarukan Vol 6, No 1 (2017): June 2017 [Nationally Accredited]
Publisher : Semarang State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v6i1.9860

Abstract

An investigation was conducted on palm oil refinery waste-spent bleaching earth (POR-SBE), POR-SBE supported by calcium as catalysts for methyl esters production through transesterification process using waste frying oil. The catalysts showed longer lasting activity than the traditional alkali catalysts. The optimum conditions for the process were: Ca-POR-SBE catalyst amount 7 %; methanol to oil molar ratio 12:1; and a reaction duration is 4 h. The process was able to transesterify oil to methyl esters at 96.8 % conversion at 65 °C. The catalysts were easily separated from the reaction mixture and the final product met selected biodiesel fuel properties in accordance with European Standard EN 14214.
PREPARATION OF SPENT BLEACHING EARTH-SUPPORTED CALCIUM FROM LIMESTONE AS CATALYST IN TRANSESTERIFICATION OF WASTE FRYING OIL Hindryawati, Noor; Daniel, Daniel; Erwin, Erwin; Maniam, Gaanty Pragas
Jurnal Bahan Alam Terbarukan Vol 6, No 1 (2017): June 2017 [Nationally Accredited]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v6i1.9860

Abstract

An investigation was conducted on palm oil refinery waste-spent bleaching earth (POR-SBE), POR-SBE supported by calcium as catalysts for methyl esters production through transesterification process using waste frying oil. The catalysts showed longer lasting activity than the traditional alkali catalysts. The optimum conditions for the process were: Ca-POR-SBE catalyst amount 7 %; methanol to oil molar ratio 12:1; and a reaction duration is 4 h. The process was able to transesterify oil to methyl esters at 96.8 % conversion at 65 °C. The catalysts were easily separated from the reaction mixture and the final product met selected biodiesel fuel properties in accordance with European Standard EN 14214.
Modification of Spent Bleaching Earth with WO3 and the Application for Photocatalytic Degradation of Waste Dyestuff under Solar Light Hindryawati, Noor; Panggabean, Aman Sentosa; Subagyono, Dirgarini Julia Nurlianti; Putri, Rinda Anisyah; Kusmiaty, Prilianda; Maniam, Gaanty Pragas
Jurnal Bahan Alam Terbarukan Vol 8, No 2 (2019): December 2019 [Nationally Accredited - Sinta 2]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v8i2.22023

Abstract

Degradation of blue dye waste in Sarong Samarinda production using WO3-bleaching earth (BE) has been conducted. Structural and morphological characterization has conducted using X-ray diffraction (XRD), and Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDX). The X-ray diffraction results show the mineral on bleaching earth is rectorite dioctahedral mica layer and dioctahedral smectite with a ratio 2:1. The WO3 pattern is appeared after the calcination. After calcination at 500°C, the WO3 is deposited homogeneously on the BE surface. The catalytic performance of WO3-BE for photodegradation of the blue dye waste under the solar light is 99.85 % within 1 h.
Preparation of Dye-Sensitized Solar Cell (DSSC) Using TiO2 and Mahkota Dewa Fruit (Phaleria Macrocarpa (Scheff) Boerl.) Extract Hindryawati, Noor; Hiyahara, Irfan Ashari; Saputra, Herdian; Arief, M. Syaiful; Maniam, Gaanty Pragas
Jurnal Bahan Alam Terbarukan Vol 10, No 1 (2021): June 2021 [Nationally Accredited - SINTA 2]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v10i1.32378

Abstract

A dye sensitized solar cell (DSSC) is a low-cost solar cell with attractive features. DSCC contains of photoelectrode, dye, electrolyte, and counter electrode with photoelectrochemical system. The aim of this research is to determine the percent efficiency produced by DSSC from the Mahkota Dewa extract. This was carried out in various stages, namely sample preparation and extraction, DSSC assembly, TiO2 characterization using Scanning Electron Microscopy (SEM), and testing its current and voltage. The results showed that the maximum wavelength of the Mahkota Dewa extract dye test using a UV-Vis spectrophotometer was 554 nm with an absorbance of 0.163, which was believed to be the wavelength of flavonoid and anthocyanin compounds. Based on the characterization results, surface morphology was spherical and agglomerated. However, after being soaked in the dye, the surface morphology of the TiO2 layer did not appear spherical on the surface that was expected to have been covered by the dye. The measurement using sunlight sources showed that the maximum current and voltage of DSSC with a concentration of 30% w/v was 21.8x10-4A and 58.86 V with an efficiency of 22.43x10-3 %. In addition, there was a 0.482% decrease in DSSC efficiency based on the storage time which lasted for a period of 6 days.
Preparation of Dye-Sensitized Solar Cell (DSSC) Using TiO2 and Mahkota Dewa Fruit (Phaleria Macrocarpa (Scheff) Boerl.) Extract Hindryawati, Noor; Hiyahara, Irfan Ashari; Saputra, Herdian; Arief, M. Syaiful; Maniam, Gaanty Pragas
Jurnal Bahan Alam Terbarukan Vol 10, No 1 (2021): June 2021 [Nationally Accredited - Sinta 2]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v10i1.32378

Abstract

A dye sensitized solar cell (DSSC) is a low-cost solar cell with attractive features. DSCC contains of photoelectrode, dye, electrolyte, and counter electrode with photoelectrochemical system. The aim of this research is to determine the percent efficiency produced by DSSC from the Mahkota Dewa extract. This was carried out in various stages, namely sample preparation and extraction, DSSC assembly, TiO2 characterization using Scanning Electron Microscopy (SEM), and testing its current and voltage. The results showed that the maximum wavelength of the Mahkota Dewa extract dye test using a UV-Vis spectrophotometer was 554 nm with an absorbance of 0.163, which was believed to be the wavelength of flavonoid and anthocyanin compounds. Based on the characterization results, surface morphology was spherical and agglomerated. However, after being soaked in the dye, the surface morphology of the TiO2 layer did not appear spherical on the surface that was expected to have been covered by the dye. The measurement using sunlight sources showed that the maximum current and voltage of DSSC with a concentration of 30% w/v was 21.8x10-4A and 58.86 V with an efficiency of 22.43x10-3 %. In addition, there was a 0.482% decrease in DSSC efficiency based on the storage time which lasted for a period of 6 days.
Green Synthesis Of Silver Nanoparticles Using Ketapang Leaf Extract (Terminalia Catappa L.) Assisted By Ultrasound Syaima, Husna; Hindryawati, Noor; Hiyahara, Irfan Ashari; Wirawan, Teguh; Arief, M. Syaiful; Widodo, Nanang Tri; Ahmad, Atika Aulia; Maniam, Gaanty Pragas
Jurnal Bahan Alam Terbarukan Vol 12, No 2 (2023): December 2023 [Nationally Accredited Sinta 2]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v12i2.48809

Abstract

Green synthesis of silver nanoparticles using plants has been interesting in recent years. In the present study, the silver nanoparticles were synthesized using a bioreductor from ketapang leaf extract (Terminalia catappa L.) assisted by sonochemical methods. This green synthesis provides an economic, eco-friendly, and clean synthesis route for silver nanoparticles. Different concentrations of AgNO3 precursors (0.5; 1.0 and 1.5 mM) were initially reacted with ketapang leaf extract with PVA 1% solution as stabilizers that were sonicated for 30 minutes. Silver nanoparticle colloidal solutions were characterized using UV-Vis spectrophotometers, Particle Size Analyzers (PSA), and Transmission Electron Microscopes (TEM). Maximum absorption of silver nanoparticles was obtained at wavelength 420-450 nm. Based on UV data, the silver nanoparticles showed stability for up to 3 weeks. The XRD peaks indicated that the (111) crystallographic plane was more predominant than other planes. The average size of the silver nanoparticles was 79.7 nm from the PSA result. TEM imaging depicted that the nanoparticles were spherical. Finally, the result proved that the silver nanoparticles effectively removed the methylene blue up to 76.43% within optimum conditions (3 ppm of methylene blue, 15 minutes contact time, and 8% nanoparticle concentration).