Claim Missing Document
Check
Articles

Found 4 Documents
Search

The Systematic Literature Review of the spiral development model: Topics, trends, and application areas Risna Sari; Anggi Muhammad Rifa’i; Muhammad Salimy Ahsan; Mohammad Rezza Pahlevi; M. Ilham Arief
International Journal of Research and Applied Technology (INJURATECH) Vol 2 No 2 (2022): International Journal of Research and Applied Technology (INJURATECH)
Publisher : Universitas Komputer Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34010/injuratech.v2i2.8372

Abstract

The spiral model is one of the methods used to perform software engineering development and can also be used for development in other fields. This spiral model is the result of a modification from the combination of the waterfall model and prototyping model so that it has many advantages including in each result an evaluation will be carried out, carried out sequentially or systematically, and is more focused in carrying out risk analysis from each stage. Has a function in development to make changes, additions and developments by determining accuracy and speed based on needs. In its implementation the spiral model has been carried out in various fields, but the results of the implementation are not yet known in what scope and how many implementations each year. This study aims to identify the results of the implementation of the spiral model development with data obtained from related papers in the 2012-2022 range. The method used in this study is the Systematic Literature Review (SLR) with the aim of identifying, reviewing, evaluating, and concluding all research on each relevant paper. The results showed that the spiral model development was mostly implemented in software development with a total of 19 papers and in the education sector as many as 17 papers, while the peak of the spiral model development was mostly implemented in 2016 and then increased again in 2021
Analisis Index Vegetation Wilayah Terdampak Kebakaran Hutan Riau Menggunakan Citra Landsat-8 dan Sentinel-2 Risna Sari; Liana Trihardianingsih; Rizki Firdaus Mulya; M. Ilham Arief; Kusrini Kusrini
CogITo Smart Journal Vol. 8 No. 2 (2022): Cogito Smart Journal
Publisher : Fakultas Ilmu Komputer, Universitas Klabat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31154/cogito.v8i2.439.282-294

Abstract

Kebakaran hutan telah diidentifikasi sebagai salah satu isu lingkungan utama yang memiliki dampak terhadap keanekaragaman hayati dan iklim global jangka panjang. Riau merupakan salah satu wilayah di Indonesia yang sering mengalami kebakaran hutan. Upaya untuk memulihkan hutan pasca kebakaran dapat dilakukan dengan pengawasan lahan seperti mengamati tingkat vegetasi pada kawasan kebakaran. Dalam penelitian ini, dilakukan analisis untuk mengklasifikasikan tingkat vegetasi kawasan pasca kebakaran dengan memanfaatkan indeks vegetasi dengan tujuan mengetahui tingkat vegetasi pasca kebakaran pada wilayah rawan kebakaran di kabupaten Riau. Model yang digunakan pada penelitian ini memakai algoritma Random Forest dan variabel penentu yang digunakan adalah NDVI, NBR, EVI, dan SAVI. Penelitian ini dilakukan dengan menggunakan 2 citra satelit, yaitu Citra Landsat 8 dan Sentinel-2. Dasaset yang didapatkan menggunakan landsat-8 adalah 1871 data, sedangkan dengan menggunakan sentinel-2 diperoleh 606 data. Akurasi data testing maksimal yang diperoleh dengan menggunakan landsat-8 adalah sebesar 99%, sedangkan dengan menggunakan sentinel-2, diperoleh akurasi maksimal sebesar 94%.
Understanding of Requirements Engineering using The Three Dimensions of Requirements Engineering Method in Platform Development Sari, Risna; Anggi Muhammad Rifa'i; Muhammad Salimy Ahsan; M Ilham Arief; Mohammad Rezza Pahlevi
Jurnal Internasional Teknik, Teknologi dan Ilmu Pengetahuan Alam Vol 5 No 2 (2023): International Journal of Engineering, Technology and Natural Sciences
Publisher : Universitas Teknologi Yogyakarta, Yogyakarta, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46923/ijets.v5i2.218

Abstract

Requirements engineering is a critical activity in a development system project, the increasing need for complexity of software development and the heterogeneity of stakeholders in motivating the development of methods and the need to evaluate the engineering requirements needed and aim to lead to a large scale. This study presents a paper in an empirical form that aims to identify and understand the characteristics of the advantages and limitations of the developed platform so that we can know the challenges that will be faced, such as expectations and input from experts for the development of the platform that we develop so that it can be in accordance with what users expect. We conducted this research with the aim of understanding the engineering requirements in the research we developed by utilizing the three dimensions of the requirements engineering method, which consists of requirement elicitation, requirement specification, and requirement validation and verification. The research we conducted managed to understand the stages of needs engineering by producing many documents that help the platform development process. We get the most important UI value from attractiveness, clarity, efficiency, accuracy, stimulation, and novelty, which is 63.2% with a very interest rating, 55.6 with a very interest rating, 57.9% with a very interest rating, 44.4% with a balanced rating between interesting and very interest, 52.6% with an interesting rating, 42.1% with a very interesting rating. We get product values consisting of attractiveness, clarity, efficiency, accuracy, stimulation, and novelty, namely 68.4% with a very interest rating, 52.6% with an interest ng rating, 52.6% with a very interest rating, 47.4% with a balanced rating between interesting and very interest, 47.4% with a balanced rating between interesting and very interest, 47.4% with a balanced rating between interesting and very interest
PREDIKSI PELUANG KESUKSESAN FILM DALAM PRA PRODUKSI MENGGUNAKAN ALGORITMA DECISION TREE Ariatmanto, Dhani; Ilham Arief, Muhammad
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 7 No. 1 (2023): JATI Vol. 7 No. 1
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v7i1.6277

Abstract

Film merupakan salah satu hiburan yang popular didunia. Tingkat kesuksesan film tergantung dari jumlah penonton. Namun, banyaknya jumlah penonton berkaitan tidak hanya dari pemeran utama tapi juga plot cerita dan genre dari film tersebut. Pra produksi merupakan tahapan dari proses pembuatan Film. Dalam proses pra produksi terdapat ide dan konsep untuk pembuatan naskah. Penelitian ini memprediksi kuseksesan produksi film dari pengklasifikasian berdasar bahasa, negara, title years, imdb_score, movie_title, content_rating, director_name, budget, gross, genre, actor_name. Dataset yang digunakan bersifat public dari IMDB dan metode yang digunakan yaitu decision tree (DT). Tahapan dimulai dari pengumpulan data, pre-processing, klasifikasi dan terakhir pengujian model. Dari hasil eksperimen didapatkan tingkat akurasi yang lebih baik dari penelitian sebelumnya dengan akurasi sebesar 68%