Claim Missing Document
Check
Articles

Found 20 Documents
Search
Journal : eProceedings of Engineering

Optimasi Kapasitas Penyimpanan Stego-image Menggunakan Algoritma Particle Swarm Optimization Sahlya Handayati; Danang Triantoro Murdiansyah; Z K A Baizal
eProceedings of Engineering Vol 3, No 3 (2016): Desember, 2016
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Manusia telah menyembunyikan pesan rahasia dengan berbagai metode dan variasi salah satunya adalah Steganography. Steganography merupakan pengembangan dari teknik pengamanan data. Saat ini telah banyak metode untuk steganography, misalnya metode LSB, HC-RIOT coder, DCT, dan DWT. Kebanyakan penelitian baru-baru ini menerapkan Discrete Wavelet Transform (DWT) karena aplikasi yang luas dalam standar kompresi gambar baru, JPEG2000. Oleh karena itu pada tugas akhir akan diterapkan Discrete Wavelet Transform dan Particle Swarm Optimization pada steganography untuk mengoptimasi kapasitas penyimpanan stego-image. Algoritma Particle Swarm Optimization beserta Optimal Pixel Adjustment Process juga diterapkan untuk mendapatkan fungsi pemetaan yang optimal untuk mengurangi perbedaan antara Cover image dan Stego-image. Optimal Pixel Adjustment Process dilakukan setelah menyisipkan pesan kedalam Cover image. Hasil akhir dari optimasi kapasitas menggunakan algoritma Particle Swarm Optimization 59.1199 dB untuk PSNR dan 50 % untuk capacity Kata Kunci: Steganography, Discrete Wavelet Transform, Particle Swarm Optimization, Optimal Pixel Adjustment Process.
Optimasi Kapasitas Penyimpanan Menggunakan Algoritma Genetika Miranti Andhita Scantya; Z K A Baizal; Danang Triantoro Murdiansyah
eProceedings of Engineering Vol 3, No 3 (2016): Desember, 2016
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

-
Prediksi Indeks Harga Saham Menggunakan Metode Gabungan Support Vector Regression Dan Random Forest Barini Harahap; Rian Febrian Umbara; Danang Triantoro Murdiansyah
eProceedings of Engineering Vol 3, No 3 (2016): Desember, 2016
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Indeks harga saham adalah indikator atau cerminan pergerakan harga saham. Indeks merupakan salah satu pedoman bagi investor untuk menanamkan modal investasi di pasar modal khususnya saham. Penelitian ini memprediksi harga penutupan indeks harga saham pada hari ke (t+1), (t+5), (t+10), (t+20), dan (t+30) menggunakan metode gabungan Support Vector Regression (SVR) dan Random Forest (RF) lalu membandingkannya dengan menggunakan metode Support Vector Regression dan Random Forest . Data yang digunakan pada penelitian ini adalah data Indeks Harga Saham Gabungan Indonesia selama lima tahun (2011-2015). Hasil yang didapat pada penelitian ini adalah nilai MAPE metode SVR lebih kecil untuk prediksi hari ke (t+1) dan (t+5) dengan nilai MAPE sebesar 1.9119% dan 4.5691%, sedangkan untuk prediksi hari ke (t+10), (t+20), dan (t+30) metode yang memiliki nilai MAPE terkecil adalah metode SVR-RF dengan nilai MAPE sebesar 4.1173%, 8.6391%, dan 9.1708%. Dari hasil penelitian ini dapat disimpulkan bahwa metode SVR baik untuk prediksi jangka pendek sedangkan metode SVR-RF baik untuk prediksi jangka panjang. Kata kunci : Prediksi, Indeks Harga Saham, IHSG, Support Vector Regression, Random Forest.
Implementasi Algoritma Genetika Dan Jaringan Syaraf Tiruan Untuk Klasifikasi Penyakit Tumor Usus Besar Aldi Riyadi Ramadhan; Danang Triantoro Murdiansyah; Annisa Aditsania
eProceedings of Engineering Vol 5, No 3 (2018): Desember 2018
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak Tumor usus besar merupakan salah satu penyakit paling umum yang dapat menyebabkan kematian, di mana setengah juta kasus tumor usus besar terjadi setiap tahun di seluruh dunia. Kasus kematian dapat dicegah dengan melakukan diagnosis yang akurat sehingga pasien bisa mendapatkan pertolongan yang te-pat dan cepat. Diagnosis dilakukan dengan memperoleh informasi dari data DNA pasien yang berbentuk microarray memiliki ribuan atribut. Pada penelitian ini dipakai data ekspresi gen pasien tumor colon(tumor usus bensar), yang diambil dari Kent Ridge Biomedical Data Set Repository. Dimensi data ekspresi gen ber-jumlah ribuan hingga jutaan atribut sehingga proses komputasi memakan waktu dan upaya yang lebih besar. Maka dari itu dibutuhkan metode untuk melakukan reduksi dimensi, namun tetap menggunakan data-data terbaik yang mampu memberikan hasil yang akurat. Pada penelitian ini dilakukan penggabungan metode algoritma genetika serta jaringan syaraf tiruan atau lebih sering disebut AG-JST Hybrid yang mampu melakukan reduksi dimensi dan tetap menggunakan data-data terbaik. Hasil terbaik yang diberikan pada pengujian dengan AG-JST adalah reduksi dimensi data DNA sebesar 47% dan akurasi 89%. Kata kunci : DNA, Tumor usus besar, Algoritma Genetika, Jaringan Syaraf Tiruan, Hybrid. Abstract Colon tumors are one of the most common diseases that can cause death, where half a million cases of colon tumors occur every year around the world. Death cases can be prevented by making an accurate diagnosis so that patients can get the right and fast help. Diagnosis is done by obtaining information from patient DNA data in the form of textit microarray which has thousands of attributes. However, the dimensions of human DNA data amount to thousands to millions of attributes so the computational process takes more time and effort. Therefore we need a method to reduce dimensions, but still use the best data that can provide accurate results. In this study, a combination of genetic algorithm and artificial neural networks or more commonly called AG-JST textit Hybrid is capable of reducing dimensions and still using the best data. The best results given for testing with AG-ANN are the reduction of DNA data dimensions by 47 % and accuracy of 89 Keywords: DNA, Colon Tumor, Genetich Algorithm, Artificial Neural Networks, Hybrid.
Diagnosa Penyakit Jantung Koroner Pada Pasien Dengan Mengunakan Fuzzy Inference System Muhamad Paisal Hanip; Danang Triantoro Murdiansyah; Annisa Aditsania
eProceedings of Engineering Vol 6, No 1 (2019): April 2019
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak Penyakit Jantung Koroner (PJK) merupakan keadaan dimana terjadi penimbunan plak pembuluh darah koroner. Hal ini menyebabkan arteri koroner menyempit atau tersumbat. Arteri koroner merupakan arteri yang menyuplai darah ke otot jantung dengan membawa oksigen yang banyak. Penelitian ini menggunakan sistem fuzzy untuk mendiagnosa tingkat keparahan penyakit jantung koroner. Variabel input yang digunakan dalam penelitian yaitu Usia, Jenis kelamin, Tipe nyeri dada, Tekanan darah, Kolesterol, Gula darah, Restecg, Thalach, Nyeri dada, Oldpeak, Slope, Ca, Thal, Diagnosa. Dalam pembuatan sistem digunakan 90 data yang kemudian dibagi menjadi 2 jenis data yaitu 70 data training dan 20 data testing. Hasil dari penelitian tentang aplikasi sistem fuzzy untuk diagnosa penyakit jantung koroner yaitu diperoleh tingkat keakuratan pada metode defuzzifikasi centroid sebesar 92,8% untuk data training dan 90% untuk data testing, sedangkan untuk metode defuzzifikasi MOM diperoleh tingkat keakuratan data training sebesar 85,7% dan data testing sebesar 90%. Berdasarkan hasil penelitian, dapat dikatakan bahwa metode defuzzifikasi centroid lebih baik dibanding sistem defuzzifikasi MOM untuk sistem diagnosa penyakit jantung koroner, sehingga, dapat disimpulkan bahwa dengan menggunakan sistem fuzzy dengan defuzzifikasi centroid, kemungkinan benar dalam mendiagnosa Penyakit Jantung Koroner (PJK) sebesar 92,8%. Kata kunci : penyakit,jantung koroner,fuzzy,centroid,MOM,defuzzifikasi Abstract Coronary Heart Disease (CHD) is a condition where there is accumulation of coronary artery plaque. This causes the coronary arteries to narrow or become blocked. Coronary arteries are arteries that supply blood to the heart muscle by carrying large amounts of oxygen. This study uses a fuzzy system to diagnose the severity of coronary heart disease. Input variables used in the study are age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang, oldpeak, slope, ca, thal. In making the system used 90 data which is then divided into 2 types of data, namely 70 training data and 20 testing data. The results of the research on the application of fuzzy systems for the diagnosis of coronary heart disease are obtained the level of accuracy in the centroid defuzzification method of 92.8% for training data and 90% for testing data, while for the MOM defuzzification method the training data accuracy rate is 85.7% and data testing of 90%. Based on the results of the study, it can be said that the centroid defuzzification method is better than the MOM defuzzification system for the coronary heart disease diagnosis system, so, it can be concluded that by using a fuzzy system with centroid defuzzification, it is likely correct in diagnosing Coronary Heart Disease (CHD) 92.8%. Keywords : disease, coronary heart, fuzzy, centroid, MOM, defuzzification
Implementasi Algoritma Modified K-nearest Neighbor (mknn) Untuk Klasifikasi Penyakit Kanker Payudara M Ikhsan Perdana Putra; Danang Triantoro Murdiansyah; Annisa Aditsania
eProceedings of Engineering Vol 6, No 1 (2019): April 2019
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak Kanker payudara adalah salah satu penyakit mematikan di dunia.Menurut data WHO tahun 2013,penderita kanker payudara di dunia meningkat dari 12,7 juta kasus pada tahun 2008 menjadi 14,1 kasus juta pada tahun 2012.Sedangkan jumlah kematian meningkat dari 7,6 juta orang tahun 2008 menjadi 8,2 juta pada tahun 2012[1]. Dikarenakan semakin tinggi penyakit kanker payudara penting untuk mengetahui dan mencegah penyakit tersebut. Penelitian ini menggunakan data dari “UCI – Machine Learning Repository Breast Cancer Winconsin”. Data yang diklasifikasikan terbagi atas 2 kelas yaitu kanker payudara jinak dan kanker payudara ganas. Tujuan dari penelitian ini adalah mengelompokkan penyakit tersebut termasuk kategori jinak atau ganas berdasarkan data yang ada. Penelitian ini menggunakan dataset breast cancer Wisconsin. Metode yang digunakan dalam penelitian ini adalah algoritma Modified K-Nearest Neighbor(MKNN). Hasil pengujian menunjukkan bahwa nilai K sangat mempengaruhi akurasi. Rata-rata akurasi cenderung menurun jika nilai K dinaikkan dan akurasi akan meningkat jika data latihnya dinaikkan. Hasil akurasi tertinggi pada pengujian ini sebesar 97.61 % dengan K=1 dan data latih 90%. Kata kunci : Kanker Payudara, Modified K-Nearest Neighbor(MKNN) Abstract Breast cancer is one of the deadliest diseases in the world. According to WHO data in 2013, breast cancer patients in the world increased from 12.7 million cases in 2008 to 14.1 million cases in 2012. While the number of deaths increased from 7.6 million people in 2008 became 8.2 million in 2012 [1]. Because the higher breast cancer is important to know and prevent the disease. This study uses data from "UCI - Machine Learning Repository Breast Cancer Wisconsin". Data classified are divided into 2 classes, namely benign breast cancer and malignant breast cancer. The purpose of this study is to classify the disease including benign or malignant categories based on existing data. This study uses the Wisconsin breast cancer dataset. The method used in this study is the Modified K-Nearest Neighbor (MKNN) algorithm. The test results show that the K value is very affect accuracy. Average accuracy tends to decrease if the value of K is increased and accuracy will increase if the training data is increased. The highest accuracy results in this test are 97.61% with K = 1 and training data 90%. . Keywords: breast cancer, Modified K-Nearest Neighbor(MKNN)
Analisis Sentimen Terhadap Pemilihan Presiden Indonesia 2019 Pada Media Sosial Twitter Menggunakan Metode Naïve Bayes Lukito Agung Waskito; Kemas Muslim Lhaksmana; Danang Triantoro Murdiansyah
eProceedings of Engineering Vol 6, No 2 (2019): Agustus 2019
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pada tahun 2019 ini, media sosial twitter masih menjadi media sosial yang digemari oleh banyak orang, walaupun jumlah pengguna aktif yang sempat mengalami penurunan yang signifikan akibat ragamnya media sosial lainnya. Pada media sosial twitter ini kita dapat menuangkan apapun yang ada di pikiran kita dalam bentuk gambar, suara, dan tulisan. Setiap hari banyak sekali hal-hal yang bisa dibahas dan kita bisa menuangkannya pada media sosial twitter. Mulai dari musik, komedi, ataupun mengenai politik dan lain sebagainya. Dari hal-hal yang bisa dibahas tersebut kita bisa menggali informasi yang bermanfaat dalam sebuah penelitian mengenai topik tertentu. Untuk mengolah data dari opini-opini dalam media sosial twitter tersebut kita bisa mengerjakannya dengan teknik analisis sentimen atau opinion mining. Tetapi dalam melakukan analisis sentimen tersebut, kita perlu menggunakan teknik analisis yang tepat agar informasi yang nantinya kita dapatkan bisa maksimal dan dapat bermanfaat. Oleh karena itu, pada makalah tugas akhir ini dilakukan sebuah analisis sentimen terhadap berita yang ada di media sosial twitter mengenai pemilihan umum presiden dan wakil presiden menggunakan metode naïve Bayes classifier dengan mengklasifikasikan sentimen menjadi positif, dan negatif. Hasil penelitian yang telah dilakukan memperoleh tingkat akurasi sebesar 71.67%. Hal tersebut menunjukkan bahwa analisis sentimen menggunakan metode naïve Bayes memperoleh hasil yang cukup baik. Hasil analisis sentimen ini dapat digunakan untuk melihat bagaimana masyarakat Indonesia khususnya pada media sosial twitter dalam menanggapi proses rangkaian pemilihan umum presiden Indonesia 2019. Kata kunci : pilpres, twitter, media sosial, naïve Bayes, klasifikasi.
Analisis Sentimen Pemilihan Presiden Amerika 2020 Di Twitter Menggunakan Naive Bayes Dan Support Vector Machine Gery Nugroho; Danang Triantoro Murdiansyah; Kemas M Lhaksmana
eProceedings of Engineering Vol 8, No 5 (2021): Oktober 2021
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Analisis sentimen adalah suatu cara untuk mengekstrak emosi dari suatu teks. Tujuan dari analisis sentiment ini adalah untuk mengetahui sentiment positif atau negatif dalam suatu tweet dari twitter mengenai pemilihan Presiden Amerika 2020. Salah satu cara untuk menentukannya adalah dengan melakukan klasifikasi teks. Dengan melakukan klasifikasi teks, kita dapat melakukan prediksi sentimen dari suatu tweet. Namun terdapat suatu masalah yaitu banyaknya atribut yang dimiliki oleh suatu teks. Oleh karena itu dilakukan seleksi fitur menggunakan metode TF-IDF (Term Frequency – Inverse Document Frequency). TF-IDF merupakan teknik pembobotan suatu kata dalam dokumen. Pada penelitian ini peneliti mencoba membandingkan 2 algoritma klasifikasi yaitu Naïve Bayes dan Support Vector Machine. Hasil evaluasi menggunakan cross-validation dengan nilai K sebesar 10 serta menggunakan mean approach menunjukkan bahwa model memberikan hasil akurasi terbaik sebesar 82% menggunakan kernel linear. Berdasarkan 10000 data tweet mengenai Donald Trump dengan akurasi terbaik 82% model berhasil memprediksi 36.88% orang memiliki pandangan netral terhadap Trump, 30.78% orang memilki pandangan positif terhadap Trump, dan 32.34% memiliki pandangan pandangan negatif terhadap Trump. Lalu 10000 data tweet mengenai Joe Biden, model berhasil memprediksi atau 42.39% orang memiliki pandangan netral terhadap Biden, 29.62% orang memilki pandangan positif terhadap Biden, dan 27.99% memiliki pandangan pandangan negatif terhadap Biden Kata kunci : Pemilihan Presiden Amerika 2020,Sentiment Analysis, SVM, Naïve Bayes, TF-IDF
Prediksi Harga Beras Premium Dengan Metode Algoritma K-nearest Neighbor Yuwantoro Mukhlisin; Mahmud Imrona; Danang Triantoro Murdiansyah
eProceedings of Engineering Vol 7, No 1 (2020): April 2020
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak Pertanian merupakan salah satu sektor yang penting untuk kehidupan manusia, karena sebagian besar kebutuhan manusia dari pertanian, yaitu adalah kebutuhan pangan. Seiring berjalannya waktu, harga pangan seringkali tidak stabil, terutama harga beras, karena beras adalah makanan pokok masyarakat Indonesia. Hal ini tentu saja berpengaruh yang besar bagi masyarakat dan petani. Penyebab dari ketidakstabilan harga beras ini bisa disebabkan oleh beberapa faktor, seperti faktor lingkungan, serangan hama dan wereng, dan lahan kekeringan. Pada tugas akhir ini, akan dibahas mengenai penerapan salah satu metode data mining dalam proses prediksi harga beras dengan membandingkan harga beras pada tahun 2014 - 2019 dari BPS Kota Bandung. Dataset yang digunakan berasal dari BPS Kota Bandung dari tahun 2014 hingga 2019 dan BMKG Kota Bandung dengan tahun yang sama. Adapun metode yang digunakan adalah algoritma regresi K-Nearest Neighbor (KNN) serta untuk pengujiannya menggunakan RMSE. Hasil dari penelitian ini, metode K-Nearest Neighbor dengan model regresi dapat melakukan prediksi terhadap harga beras pada tahun 2014 - 2019 dengan nilai RMSE 0,125 dan parameter K = 2 yang sudah dinormalisasi. Kata kunci : prediksi harga beras, data mining, algoritma regresi K-Nearest Neighbor (KNN) Abstract Agriculture is one of the important sectors for human life, because most of the human needs of agriculture, namely food needs. Over time, food prices are often unstable, especially the price of rice, because rice is the staple food of Indonesian people. This of course has a big effect on the community and farmers. The cause of this rice price instability can be caused by several factors, such as environmental factors, pest and plant hopper attacks, and drought land. In this observation, will be discussed regarding the application of one data mining method in the process of predicting rice prices by comparing the 2014 - 2019 rice prices from BPS Bandung. The dataset used is from the Bandung City BPS from 2014 to 2019 and BMKG Bandung City in the same year. The method used is the K-Nearest Neighbor (KNN) regression algorithm and for testing using RMSE. The results of this study, the K-Nearest Neighbor method with a regression model can predict rice prices in 2014 - 2019 with an RMSE value of 0,125 and parameter K = 2 which has been normalized. Keywords: rice price prediction, data mining, K-Nearest Neighbor (KNN) regression algorithm
Klasifikasi Teks Artikel Berita Hoaks Covid-19 Dengan Menggunakan Algotrima K-nearest Neighbor Berlian Kaida Palma; Danang Triantoro Murdiansyah; Widi Astuti
eProceedings of Engineering Vol 8, No 5 (2021): Oktober 2021
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Peran internet dan pertumbuhan informasi yang diberitakan di media sosial membuat perkembangan dan penyebaran berita semakin mudah, begitu pun dalam mengaksesnya. Pada masa pandemi Covid-19 saat ini banyak sekali berita yang tersebar sehingga masyarakat luas mencari atau mendapat informasi tentang virus ini. Berita berjudul Covid-19 ini banyak berisi informasi tidak penting bahkan memberitakan informasi hoaks. Hal ini membuat masyarakat internasional khususnya Indonesia resah akan berita yang beredar selama masa Covid-19. Oleh karena itu, penulis membuat sebuah model sistem untuk melakukan klasifikasi berita yang sesuai terjadi di lapangan. Informasi yang tersebar di media sosial sangat variatif sehingga banyak berita yang tidak penting bahkan berisikan informasi hoaks. Klasifikasi berita akan dilakukan dengan K-Nearest Neighbor (KNN). Berita yang ada dibagi menjadi beberapa kelas berdasarkan kategorinya, kemudian berita dilakukan klasifikasi teks dengan metode K-Nearest Neighbor (KNN) dan k-fold cross validation sebagai validasi model yang dibuat. Proses klasifikasi dilakukan dengan skema menggunakan 80% data train dan 20% data test serta mengubah parameter nilai k pada K-Nearest Neighbor dengan k = 3, k = 5, k = 7, k = 9, dan pada k-fold cross validation sebanyak k = 5 dan k = 10. Untuk evaluasi digunakan confusion matrix. Akhirnya, dari setiap model yang dilakukan dengan mengubah nilai k pada K-Nearest Neighbor didapatkan hasil akurasi terbaik dengan F1-Score sebesar 48% dari nilai k = 5, hasil validasi dari k-fold cross validation k = 5 sebesar 42% dan k = 10 sebesar 45%. Kata Kunci : Covid-19, K-Nearest Neighbor, Hoax, intenet, klasifikasi.