Claim Missing Document
Check
Articles

Found 3 Documents
Search

Pembuatan Sistem Informasi Keuangan pada Tempat Wisata Twin Lake di Desa Kemangi Bungah Gresik Saffana Assani'; Nur Abidin; Ade Hendi; Muhammad Izzuddin; Ahmad Nadhif Muhajir
Jurnal Pemberdayaan Masyarakat Vol 7 No 2 (2022): November
Publisher : Direktorat Penelitian dan Pengabdian kepada Masyarakat (DPPM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21067/jpm.v7i2.6869

Abstract

Twin Lake Tourist Attractions still carry out all of their business activities manually. Recording of financial transactions, data storage, and making transaction reports, are still done manually. This situation raises several problems, including requiring large data storage areas and requiring a relatively long time to generate transaction reports. By using a computerized information system, these problems can be solved. A financial information system is urgently needed because in addition to solving these financial problems, it will also be used as the first system to initiate the computerization of other manual systems at Twin Lakes Tourist Attractions. The information system developed uses the SDLC (system development life cycle) system development methodology, by creating functional and non-functional analysis documents as a design foundation using data flow diagrams (DFD) and development will be carried out using a web-based programming language. The result of this community service is in the form of an integrated financial information system that can be used to solve the problems experienced by the Twin Lakes Tourist Attractions. The information system will then be continued to be made into an integrated system with other systems, according to the needs of the Twin Lake Tourist Attractions.
SISTEM INFORMASI AKADEMIK BERBASIS WEB DI MTS NURUL ULUM GUMENG Hermanto; Ade Hendi; Dawamul ikhsan
Jurnal Ilmiah Komputer Terapan dan Informasi Vol. 2 No. 1 (2023): Vol. 2 No. 1: JIKTI - April 2023
Publisher : Program Studi D-III Teknologi Informasi Politeknik 'Aisyiyah Pontianak

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Disaat era globalisasi teknologi seperti saat ini, kebutuhan akan informasi dalam dunia pendidikan menjadi sangat penting. Dengan pemanfaatan dan penerapan teknologi informasi data satu sama lainnya dapat diorganisasikan menjadi sebuah file basis data, dimana data-data diorganisasikan kemudian disimpan kedalam komputer untuk memudahkan pemakai dalam mengakses data. Namun pemanfaatan teknologi informasi belum sepenuhnya bisa dimanfaatkan seefektif mungkin pada MTs Nurul Ulum Gumeng Gresik karena masih menggunakan sistem manual untuk mendukung kegiatan proses belajar mengajar. Baik dalam penilaian, absensi, maupun kegiatan administrasi, sehingga membutuhkan waktu yang cukup lama untuk melakukan kegiatan-kegiatan tersebut dan hasilnya pun belum tentu akurat. Penelitian ini bertujuan untuk membuat suatu Aplikasi Sistem Informasi Akademik Berbasis Web menggunakan bahasa pemrograman PHP (Personal Home Page), database MySQL, dan Xampp Web Server untuk mendukung kegiatan operasional sehari-hari pada sekolah tersebut. Dengan adanya aplikasi berbasis web ini akan dapat mempermudah Pengelolahan data akademik di MTs Nurul Ulum Gumeng dan Sistem ini secara otomatis mempermudah guru dalam melakukan absensi dan melihat jadwal di sekolah.
Physiological Signals as Predictors of Mental Workload: Evaluating Single Classifier and Ensemble Learning Models Nailul Izzah; Auditya Purwandini Sutarto; Ade Hendi; Maslakhatul Ainiyah; Muhammad Nubli bin Abdul Wahab
Jurnal Optimasi Sistem Industri Vol. 22 No. 2 (2023): Published in December 2023
Publisher : The Industrial Engineering Department of Engineering Faculty at Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/josi.v22.n2.p81-98.2023

Abstract

With a growing emphasis on cognitive processing in occupational tasks and the prevalence of wearable sensing devices, understanding and managing mental workload has broad implications for safety, efficiency, and well-being. This study aims to develop machine learning (ML) models for predicting mental workload using Heart Rate Variability (HRV) as a representation of the Autonomic Nervous System (ANS) physiological signals. A laboratory experiment, involving 34 participants, was conducted to collect datasets. All participants were measured during baseline, two cognitive tests, and recovery, which were further separated into binary classes (rest vs workload). A comprehensive evaluation was conducted on several ML algorithms, including both single (Support Vector Machine/SVM and Naïve Bayes) and ensemble learning (Gradient Boost and AdaBoost) classifiers and incorporating selected features and validation approaches. The findings indicate that most HRV features differ significantly during periods of mental workload compared to rest phases. The SVM classifier with knowledge domain selection and leave-one-out cross-validation technique is the best model (68.385). These findings highlight the potential to predict mental workload through interpretable features and individualized approaches even with a relatively simple model. The study contributes not only to the creation of a new dataset for specific populations (such as Indonesia) but also to the potential implications for maintaining human cognitive capabilities. It represents a further step toward the development of a mental workload recognition system, with the potential to improve decision-making where cognitive readiness is limited and human error is increased.