Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

433Mhz based Robot using PID (Proportional Integral Derivative) for Precise Facing Direction Hariyadi, Mokhamad Amin; Fadila, Juniardi Nur; Sifaulloh, Hafizzudin
JOIV : International Journal on Informatics Visualization Vol 7, No 3 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.3.1841

Abstract

This research endeavor aims to evaluate the effectiveness of the robot's direction control system by employing PID (Proportional Integral Derivative) output and utilizing wireless communication LoRa E32 433MHz. The experimental robot used in this study was a tank model robot equipped with 4 channels of control. LoRa was implemented in the robot control system, in conjunction with an Android control application, through serial data communication. The LoRa E32 module system was selected based on its established reliability in long-range communication applications. However, encountered challenges included the sluggishness of data transmission when using LoRa for transferring control data and the decreased performance of the robot under Non-Line of Sight conditions. To overcome these challenges, the PID method was employed to generate control data for the robot, thereby minimizing the error associated with controlling its movements. The PID system utilized feedback from a compass sensor (HMC5883L) to evaluate the setpoint data transmitted by the user, employing Kp, Ki, and Kd in calculations to enable smooth movements toward the setpoint. The findings of this study regarding the direct control of the robot using wireless LoRa E32 communication demonstrated an error range of 0.6% to 13.34%. A trial-and-error approach for control variables determined the optimal values for Kp, Ki, and Kd as 10, 0.1, and 1.5, respectively. Future investigations can integrate additional methodologies to precisely and accurately determine the PID constants (Kp, Ki, and Kd) mathematically.
Prediction of State Civil Apparatus Performance Allowances Using the Neural Network Backpropagation Method Kurniawan, Puan Maharani; Almais, Agung Teguh Wibowo; Hariyadi, M. Amin; Yaqin, M. Ainul; Suhartono, Suhartono
JOIV : International Journal on Informatics Visualization Vol 7, No 3 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.3.1698

Abstract

Performance allowance is a form of appreciation given by an agency to its human resources. The Office of the Ministry of Religion of Batu City provides performance allowances to civil servants who work in the agency. Several things that affect the provision of performance allowances, such as grade, deduction, taxable income, income tax, and total tax, are used in this study to produce the total gross performance allowances and total performance allowances received. Based on the data obtained, there are some missing data from the parameters of taxable income, income tax, and total tax. This study aims to predict performance allowance when there is missing data. The method used is Neural Network Backpropagation. This study uses 480 data with split data ratios of 50:50, 60:40, 70:30, and 80:20, with epochs 40,000 and a learning rate 0,9. Four types of models used in this study are distinguished based on the number of hidden layers and epochs used. Model A uses two hidden layers to produce the highest accuracy with a 50:50 data split ratio of 65,16%. Model B uses four hidden layers to produce the highest accuracy with a 50:50 data split ratio of 69,34%. Model C uses six hidden layers to produce the highest accuracy with a 50:50 data split ratio of 68,18%. Model D uses eight hidden layers to produce the highest accuracy with a 50:50 data split ratio of 70,90%.