Claim Missing Document
Check
Articles

Found 2 Documents
Search

DETEKSI TINGGI VEGETASI DI DELTA MAHAKAM DENGAN PENGINDERAAN JAUH Anggraini, Nanin; Julzarika, Atriyon
OLDI (Oseanologi dan Limnologi di Indonesia) Vol 4, No 3 (2019)
Publisher : Indonesian Institute of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/oldi.2019.v4i3.212

Abstract

Tinggi pohon (vegetasi) adalah jarak tegak antara puncak pohon terhadap permukaan tanah. Tinggi vegetasi menjadi salah satu parameter bagi pertumbuhan vegetasi. Ada berbagai metode untuk mengukur tinggi vegetasi, salah satunya dengan menggunakan teknologi penginderaan jauh. Penelitian ini bertujuan untuk pemetaan tinggi vegetasi di Delta Mahakam dengan model tinggi dari penginderaan jauh. Model tinggi yang digunakan adalah Model Permukaan Digital (MPD) dan Model Terrain Digital (MTD). MPD dibuat dari gabungan hasil interferometri citra satelit ALOS PALSAR dengan citra X SAR, Shuttle Radar Topography Mission (SRTM), dan tinggi geodetik dari satelit Icesat/GLAS. Penggabungan ini menggunakan metode integrasi Model Elevasi Digital (MED). Bidang geoid yang digunakan adalah EGM 2008. Langkah selanjutnya adalah koreksi terhadap kesalahan tinggi pada MPD. Koreksi terrain dilakukan untuk mengubah MPD menjadi MTD. Tinggi vegetasi diperoleh dari pengurangan MPD menjadi MTD. Uji akurasi vertikal mengacu ke toleransi 1,96?  (95 %) sebesar minimal 80 cm. Pada MPD, diperoleh nilai akurasi vertikal sebesar 60,4 cm sehingga MPD ini bisa digunakan pada pemetaan 1:10.000. Sedangkan pada MTD diperoleh nilai uji akurasi vertikal  sebesar 37 cm sehingga dapat juga digunakan untuk pemetaan skala 1:10.000. Berdasarkan hasil perhitungan MPD dan MTD, tinggi vegetasi di Delta Mahakam bervariasi antara 0 - 64 m.
Estimation and Mapping Above-Ground Mangrove Carbon Stock Using Sentinel-2 Data Derived Vegetation Indices in Benoa Bay of Bali Province, Indonesia Suardana, A. A. Md. Ananda Putra; Anggraini, Nanin; Nandika, Muhammad Rizki; Aziz, Kholifatul; As-syakur, Abd. Rahman; Ulfa, Azura; Wijaya, Agung Dwi; Prasetio, Wiji; Winarso, Gathot; Dewanti, Ratih
Forest and Society Vol. 7 No. 1 (2023): APRIL
Publisher : Forestry Faculty, Universitas Hasanuddin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24259/fs.v7i1.22062

Abstract

Carbon dioxide (CO2) is one of the greenhouse gases that causes global warming with the highest concentration in the atmosphere. Mangrove forests can absorb CO2 three times higher than terrestrial forests and tropical rainforests. Moreover, mangrove forests can be a source of Indonesian income in the form of a blue economy, therefore an accurate method is needed to investigates mangrove carbon stock. Utilization of remote sensing data with the results of the above-ground carbon (AGC) detection model of mangrove forests based on multispectral imaging and vegetation index, can be a solution to get fast, cheap, and accurate information related to AGC estimation. This study aimed to investigates the best model for estimating the AGC of mangroves using Sentinel-2 imagery in Benoa Bay, Bali Province. The random forest (RF) method was used to classified the difference between mangrove and non-mangrove with the treatment of several parameters. Furthermore, a semi-empirical approach was used to assessed and map the AGC of mangroves. Allometric equations were used to calculated and produced AGC per species. Moreover, the model was built with linear regression equations for one variable x, and multiple regression equations for more than one x variable. Root Mean Square Error (RMSE) was used to assess the validation of the model results. The results of the mangrove forests area detected in the research location around 1134.92 ha, with an Overall Accuracy (OA) of 0.984 and a kappa coefficient of 0.961. This study highlights that the best model was the combination of IRECI and TRVI vegetation indices (RMSE: 11.09 Mg/ha) for a model based on red edge bands. Meanwhile, the best results from the model that does not use the red edge band were the combination of TRVI and DVI vegetation indices (RMSE: 13.63 Mg/ha). The use of red edge and NIR bands is highly recommended in building the AGC model of mangrove forests because they can increase the accuracy value. Thus, the results of this study are highly recommended in estimating the AGC of mangrove forests, because it has been proven to be able to increase the accuracy value of previous studies using optical images.