Claim Missing Document
Check
Articles

Found 6 Documents
Search

The Implementation of Zero Run-off and Agroforestry Concept Based on River Discharge in Belik Sub Watershed, Yogyakarta Fitri, Arnellya; Ulfa, Azura
Journal of Regional and City Planning Vol 26, No 3 (2015)
Publisher : The ITB Journal Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (754.928 KB) | DOI: 10.5614/jpwk.2015.26.3.4

Abstract

Daerah Aliran Sungai (DAS) Belik merupakan salah satu Daerah Tampungan Air (DTA) yang berada di daerah perkotaan Kabupaten Sleman. Akibat alih fungsi lahan pertanian menjadi lahan pemukiman yang padat menyebabkan semakin berkurangnya area resapan air hujan. Kurangnya area resapan air hujan menyebabkan kapasitas saluran drainase Sub Daerah Aliran Sungai (DAS) Belik pada saat hujan  tidak mampu menampung air sehingga banjir di sekitar saluran drainase terjadi. Tujuan penelitian ini untuk memberikan solusi dengan menggunakan konsep zero run-off  dalam upaya  mencegah genangan banjir di perkotaan yang kurang memiliki ruang terbuka hijau dan area resapan air hujan. Kajian debit banjir yang dilakukan pada sungai Belik menggunakan metode rasional dan metode SCS CN yaitu metode yang digunakan dalam penentuan debit puncak pada satu kejadian hujan. Perhitungan debit diperlukan untuk mengetahui besar limpasan maksimum pada drainase saluran DAS Belik. Metode hidrograf  SCS CN  menggunakan parameter tekstur tanah, tebal hujan, CN wilayah, retensi potensial maksimum air oleh tanah, dan kedalaman hujan efektif. Sedangkan metode rasional menggunakan parameter koefesien aliran, intensitas hujan, dan luas daerah pengaliran dalam menghitung debit limpasan. Keseluruhan hasil perhitungan kedua metode melebihi besar debit pengukuran langsung menggunakan Metode Slope Area, artinya keseluruhan hasil menunjukkan banjir atau limpasan permukaan yang melebihi kapasitas drainase.Kata kunci. Limpasan permukaan, metode SCS CN, metode rasional, zero run-off Belik Watershed is one of the Water Catchment Areas  located in urban areas of Sleman District. Land conversion from agricultural to residential area cause the descending of rain water catchment area. Lack of rain water catchment area can cause drainage channel capacity of Belik sub zone cannot hold rain water, so that flooding occurred around the drainage channel. The aim of this research is to give a way out to overcome the flood problem by using zero run-off concepts, to prevent the flood in urban area which does not have sufficient green room and rain water penetration area. The study of flood discharge using the rational method and SCS CN method which is a method used to determine peak flow when the rain pour in Belik sub zone. The discharge calculations are necessary to determine the maximum runoff drainage of Belik sub zone channel. The hydrograph SCS CN method uses soil texture parameters, thick of the rain, CN region, the maximum potential water retention by the soil, and the depth of the effective rain. Meanwhile, the rational method uses flow coefficient parameter, rainfall intensity, and area of drainage in calculating discharge runoff. All of the calculations results from both methods are bigger than the result using direct measurement with slope area method. This means that all of the result shows that flood or run off is bigger than the drainage capacity.Keywords. Run-off, SCS CN method, rational method, zero run-off
The Calculation Of Ngancar Batuwarna Reservoir, Wonogiri, Central Java Ulfa, Azura; Suprayogi, Slamet; Khoirullah, Evi Mivtahul
Media Komunikasi Geografi Vol 18, No 2 (2017)
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1121.528 KB) | DOI: 10.23887/mkg.v18i2.12620

Abstract

Evaluation of reservoir capacity is needed to find out how big the effective volume change of Ngancar Reservoir from the beginning of measurement until 2016. The purpose of this research is measuring volume of Ngancar Reservoir using bathymetry method with echosounder and calculating the remaining relative age of Ngancar Reservoir. Measurement topography of Ngancar Reservoir is done by bathymetry method of aquatic systematic random sampling method through certain path using echosounder. Analysis of reservoir capacity is done by calculating the volumes of Ngancar Reservoir and calculating the residual life of the reservoir relative. Fluctuation analysis of volume change was done by calculating the effective volume of reservoirs 1946-2016 and graphs. The calculation of the volume of the Ngancar Reservoir from the topographic map produces an effective volume value of 2016 is 1269905 m3 and the effective puddle area is 1393416 m2. An increase in sedimentation volume from 2011-2016 amounted to 296119.75 m3 with sedimentation rate was 59223.95 / year. With the assumption that the same landuse and sedimentation rate tend to be stable then the remaining age of Ngancar Reservoir is 21 years and 95 years old.
Estimation and Mapping Above-Ground Mangrove Carbon Stock Using Sentinel-2 Data Derived Vegetation Indices in Benoa Bay of Bali Province, Indonesia Suardana, A. A. Md. Ananda Putra; Anggraini, Nanin; Nandika, Muhammad Rizki; Aziz, Kholifatul; As-syakur, Abd. Rahman; Ulfa, Azura; Wijaya, Agung Dwi; Prasetio, Wiji; Winarso, Gathot; Dewanti, Ratih
Forest and Society Vol. 7 No. 1 (2023): APRIL
Publisher : Forestry Faculty, Universitas Hasanuddin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24259/fs.v7i1.22062

Abstract

Carbon dioxide (CO2) is one of the greenhouse gases that causes global warming with the highest concentration in the atmosphere. Mangrove forests can absorb CO2 three times higher than terrestrial forests and tropical rainforests. Moreover, mangrove forests can be a source of Indonesian income in the form of a blue economy, therefore an accurate method is needed to investigates mangrove carbon stock. Utilization of remote sensing data with the results of the above-ground carbon (AGC) detection model of mangrove forests based on multispectral imaging and vegetation index, can be a solution to get fast, cheap, and accurate information related to AGC estimation. This study aimed to investigates the best model for estimating the AGC of mangroves using Sentinel-2 imagery in Benoa Bay, Bali Province. The random forest (RF) method was used to classified the difference between mangrove and non-mangrove with the treatment of several parameters. Furthermore, a semi-empirical approach was used to assessed and map the AGC of mangroves. Allometric equations were used to calculated and produced AGC per species. Moreover, the model was built with linear regression equations for one variable x, and multiple regression equations for more than one x variable. Root Mean Square Error (RMSE) was used to assess the validation of the model results. The results of the mangrove forests area detected in the research location around 1134.92 ha, with an Overall Accuracy (OA) of 0.984 and a kappa coefficient of 0.961. This study highlights that the best model was the combination of IRECI and TRVI vegetation indices (RMSE: 11.09 Mg/ha) for a model based on red edge bands. Meanwhile, the best results from the model that does not use the red edge band were the combination of TRVI and DVI vegetation indices (RMSE: 13.63 Mg/ha). The use of red edge and NIR bands is highly recommended in building the AGC model of mangrove forests because they can increase the accuracy value. Thus, the results of this study are highly recommended in estimating the AGC of mangrove forests, because it has been proven to be able to increase the accuracy value of previous studies using optical images.
Assessment of Heavy Metals Using the Enrichment Factor and Geoaccumulation Index in Menjer Lake, a Tropical Volcanic Lake Fadlillah, Lintang; Widyastuti, M; Rachmawati, Alfina Ayu; Ulfa, Azura
LIMNOTEK Perairan Darat Tropis di Indonesia Vol. 30 No. 1 (2024)
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/limnotek.2024.3880

Abstract

Lakes are recognized as vulnerable to pollution, including Menjer Lake, whose catchment area is dominated by agricultural lands and features floating net cages in the water body. The heightened contamination risk within the lake primarily stems from the accumulation of heavy metals, compounds known for their profound toxicity. The high-level concentration of heavy metal in sediment aligns with the level of water toxicity, underscoring the urgent need for thorough assessment and monitoring. The research focused on assessing heavy metal concentration and distribution through spatial analysis. Toxicity levels were evaluated using the enrichment factor (EF) and Geoaccumulation Index (Igeo). This study collected eight samples each during the rainy season of 2022 and 2023. The heavy metals were tested using an Atomic Absorption Spectrophotometer (AAS), including Pb, Cd, Cr, Fe, Al, and Cu. Comparatively, the mean concentration of heavy metals in 2023 was slightly higher for Fe and Al than in 2022. Moreover, Cd was not detected in either 2022 or 2023. The variety of land use and land cover has consequences on the spatial distribution of toxicity levels, showing an influential correlation between Al, Pb, and Fe metals with locations associated with cropland and floating net cages. Additionally, highly steep slopes significantly affected erosions that induced sediment from agricultural land use, further underscoring the multifaceted nature of environmental risk factors.
SPATIO-TEMPORAL ANALYSIS OF CHANGES IN CORAL REEF AREA USING LANDSAT 8 SATELLITE IMAGERY ON PARI ISLAND, KEPULAUAN SERIBU, DKI JAKARTA Akmal, Faisal; Semedi, Bambang; Ulfa, Azura
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 21, No 1 (2024)
Publisher : Ikatan Geografi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2024.v21.a3894

Abstract

Coral reefs are ecosystems that are sensitive to change. High pressure can cause damage to coral reefs. Monitoring the condition of coral reefs needs to be done to know the current condition. One way that can be used to monitor coral reefs is by utilizing remote sensing. The research was conducted to know the changes in the coral reef area and the factors that influence the changes in the coral reef area in Pari Island, Kepulauan Seribu, DKI Jakarta in the period 2013 to 2022. The research was conducted using Landsat 8 image data from 2013 to 2022. Image data processing was done with an object-based classification method. Coral cover measurements were conducted using the Line Intercept Transect (LIT) method. The results showed a change in coral reef area of 7.02 ha with the condition of live coral cover ranging from 27-43% which is included in the fair category. The results of field measurements show that the condition of water parameters falls into the unsuitable category. The increase in area that occurred was thought to be due to management activities carried out by the Pari Island community and activities carried out by LIPI in 2016, namely conducting coral reef restoration. The decrease in area is partly due to coastal reclamation activities, destructive tourist activities, and parameter conditions.
Coastal Vulnerability Assessment Based on Coastal Vulnerability Index (CVI) on the Coastal Area of Kolaka Regency, Southeast Sulawesi, Indonesia Kharisma, Gaby; Triani, Triani; Ulfa, Azura; Adriadi Ghiffari, Rizki; Anjas Sari, Hermis
Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management) Vol 14 No 2 (2024): Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (JPSL)
Publisher : Pusat Penelitian Lingkungan Hidup, IPB (PPLH-IPB) dan Program Studi Pengelolaan Sumberdaya Alam dan Lingkungan, IPB (PS. PSL, SPs. IPB)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jpsl.14.2.267

Abstract

The purpose of this paper is to investigate vulnerability assessments along the coastal area and small island of Kolaka Regency, Southeast Sulawesi, Indonesia. This paper used spatial analysis to estimate the Coastal Vulnerability Index (CVI). An assessment of CVI was carried out using eight parameters to build into five categories, with very low to very high category vulnerability. Coastal vulnerability in the Kolaka coastal area varies from a very low to a very high category. Hence, this study suggests that policymakers need to make a long-term plan for local coastal zones, and they should prioritize a precision disaster-based analysis to minimize the damage caused by the disaster in the future.