Claim Missing Document
Check
Articles

Found 13 Documents
Search

FINE-TUNING RESNET50V2 WITH ADAMW AND ADAPTIVE TRANSFER LEARNING FOR SONGKET CLASSIFICATION IN LOMBOK Wahyudi, Erfan; Imran, Bahtiar; Zaeniah; Erniwati, Surni; Karim, Muh Nasirudin; Muahidin, Zumratul
Jurnal Pilar Nusa Mandiri Vol. 21 No. 1 (2025): Pilar Nusa Mandiri : Journal of Computing and Information System Publishing Pe
Publisher : LPPM Universitas Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/pilar.v21i1.6485

Abstract

This study aims to develop a classification system for traditional Lombok songket fabric patterns using the ResNet50V2 architecture, optimized through fine-tuning and the AdamW optimizer. The data were collected directly from songket artisans in Lombok and categorized into three groups based on the origin of the patterns: Sade, Sukarara, and Pringgasela. The model was trained with data augmentation techniques, including rotation, shifting, and zooming, to increase data diversity. During the training process, fine-tuning was applied to the last layer of ResNet50V2, and optimization was performed using AdamW with a learning rate of 0.0001. The model was evaluated using a confusion matrix, classification report, and analysis of accuracy and loss. The experimental results showed that the model achieved 100% accuracy at the 15th epoch. Furthermore, experiments with different parameters (epochs, batch size, and learning rate) demonstrated that the 15th epoch provided the best results with 100% accuracy, while using higher epochs (30 and 40) did not necessarily yield better outcomes. This model is effective in identifying songket fabric patterns with good classification results for each class. Although the results are excellent, increasing the dataset size and exploring more complex model architectures could further enhance performance. Overall, this study demonstrates the significant potential of deep learning technology in classifying songket patterns with reliable accuracy in real-world applications.
PENERAPAN ARTIFICIAL NEURAL NETWORK DAN SUPPORT VECTOR MACHINE UNTUK KLASIFIKASI KUALITAS MUTIARA KHAS LOMBOK BERDASARKAN CIRI VISUAL Karim, Muh Nasirudin; Efendi, Muhammad Masjun; Muahidin, Zumratul
Journal Computer and Technology Vol. 3 No. 1 (2025): Juli 2025
Publisher : Ninety Media Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.69916/comtechno.v3i1.336

Abstract

Penelitian ini bertujuan untuk mengklasifikasikan citra mutiara Lombok berdasarkan bentuk, ukuran, dan kecacatan menggunakan metode pengolahan citra dan kecerdasan buatan. Proses segmentasi citra dilakukan menggunakan metode thresholding untuk memisahkan objek mutiara dari latar belakang, kemudian dilanjutkan dengan deteksi tepi menggunakan metode Canny guna mempermudah ekstraksi fitur. Fitur morfologis seperti area, perimeter, roundness, diameter, serta cacat bentuk dan warna diekstraksi menggunakan metode regionprops. Hasil ekstraksi ini kemudian digunakan sebagai variabel dalam proses klasifikasi menggunakan Jaringan Syaraf Tiruan (JST) dan dibandingkan dengan metode Support Vector Machine (SVM). Dataset yang digunakan terdiri dari 360 citra mutiara yang terbagi dalam tiga kelas: A, AA, dan AAA. Hasil klasifikasi menunjukkan bahwa metode JST menghasilkan akurasi tertinggi sebesar 98%, mengungguli SVM yang memperoleh akurasi 96%. Temuan ini menunjukkan bahwa kombinasi metode regionprops dan JST efektif dalam klasifikasi multiview citra mutiara Lombok.
Implementation of Conditional WGAN-GP, ResNet50V2, and HDBSCAN for Generating and Recommending Traditional Lombok Songket Motifs Akbar, Ardiyallah; Karim, Muh Nasirudin; Imran, Bahtiar
Journal of Applied Informatics and Computing Vol. 9 No. 5 (2025): October 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i5.10894

Abstract

Songket is a traditional Indonesian woven textile with profound cultural and aesthetic value, particularly in Lombok, where artisans continue to preserve its distinctive motifs. However, the creation of new designs is still carried out manually, requiring considerable time and relying heavily on the artisans’ creativity. This study proposes an integrated system that combines Conditional Wasserstein Generative Adversarial Network with Gradient Penalty (CWGAN-GP), ResNet50V2, and HDBSCAN to automatically generate and recommend Lombok’s traditional songket motifs. The dataset consists of primary data collected directly from local artisans and secondary data from the BatikNitik public repository, thereby providing authentic yet diverse motif samples for training. CWGAN-GP is employed to synthesize motifs with stable and realistic structures across multiple epochs. Subsequently, ResNet50V2 is utilized for deep visual feature extraction, HDBSCAN for density-based clustering, and UMAP for two-dimensional visualization of motif distribution. The system successfully groups motifs into meaningful clusters, with the largest cluster containing consistent patterns of high aesthetic value. A recommendation mechanism is also developed to suggest up to five similar motifs from the original dataset within the same cluster, ensuring cultural relevance while fostering design innovation. Despite these promising outcomes, several limitations remain, such as the relatively small number of songket motif samples, variations in motif quality, and challenges during data collection including inconsistent lighting and non-uniform patterns. These factors affect both dataset consistency and generative performance. Nevertheless, this approach demonstrates the potential of artificial intelligence to support the preservation and innovation of cultural heritage by assisting artisans in creating and exploring new motifs more efficiently without losing their traditional identity.