Claim Missing Document
Check
Articles

Found 19 Documents
Search

Estimasi Parameter Sistem Radar Multi-Antena dengan Generalized-Likelihood Ratio Test Kristianto Pasepang; Syahfrizal Tahcfulloh
SITEKIN: Jurnal Sains, Teknologi dan Industri Vol 19, No 1 (2021): Desember 2021
Publisher : Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/sitekin.v19i1.15257

Abstract

Ada dua jenis sistem radar multi-antena yaitu phased-array dan Multiple-input Multiple-Output yang berturut-turut memiliki keunggulan utama yaitu coherent gain tinggi dan waveform diversity tinggi. Satu parameter terpenting untuk menguji kinerja radar-radar tersebut adalah estimasi parameter yang berkaitan pada kemampuan estimasi sudut kedatangan sinyal dan resolusinya. Makalah ini mengusulkan perluasan estimasi parameter yaitu Generalized-Likelihood Ratio Test yang dimanfaatkan selama ini pada analisa spektrum sinyal. Formulasi dan evaluasi kinerja estimator ini diuji mempertimbangkan resolusi sudut antar dua target dan jumlah elemen antena di transmitter-receiver. Pendekatan ini memberikan perbaikan resolusi terhadap estimasi sudut kedatangan dari sinyal pantulan target radar yang dikomparasikan dengan estimator konvensional seperti least squares. Resolusi sudut deteksi yang diperoleh untuk estimator ini lebih baik dari estimator least squares, sebagai contoh untuk K = L = 8 maka diperoleh resolusi sudut 3o sedangkan estimator least squares sebesar 5,8o.
Parameter Estimation and Target Detection of Phased-MIMO Radar Using Capon Estimator Syahfrizal Tahcfulloh; Muttaqin Hardiwansyah
Jurnal Elektronika dan Telekomunikasi Vol 20, No 2 (2020)
Publisher : LIPI Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/jet.v20.60-69

Abstract

Phased-Multiple Input Multiple Output (PMIMO) radar is multi-antenna radar that combines the main advantages of the phased array (PA) and the MIMO radars. The advantage of the PA radar is that it has a high directional coherent gain making it suitable for detecting distant and small radar cross-section (RCS) targets. Meanwhile, the main advantage of the MIMO radar is its high waveform diversity gain which makes it suitable for detecting multiple targets. The combination of these advantages is manifested by the use of overlapping subarrays in the transmit (Tx) array to improve the performance of parameters such as angle resolution and detection accuracy at amplitude and phase proportional to the maximum number of detectable targets. This paper derives a parameter estimation formula with Capon's adaptive estimator and evaluates it for the performance of these parameters. Likewise, derivation for expressions of detection performance such as the probability of false alarm and the probability of detection is also given. The effectiveness and validation of its performance are compared to conventional estimator for other types of radars in terms of the effect of the number of target angles, the RCS of targets, and variations in the number of subarrays at Tx of this radar. Meanwhile, the detection performance is evaluated based on the effect of Signal to Noise Ratio (SNR) and the number of subarrays at Tx. The evaluation results of the estimator show that it is superior to the conventional estimator for estimating the parameters of this radar as well as the detection performance. Having no sidelobe makes this estimator strong against the influence of interference and jamming so that it is suitable and attractive for the design of radar systems. Root mean square error (RMSE) on magnitude detection from LS and Capon estimators were 0.033 and 0.062, respectively. Meanwhile, the detection performance for this radar has the probability of false alarm above 10-4 and the probability of detection of more than 99%.
METODE FORWARD-BACKWARD CAPON UNTUK ESTIMASI PARAMETER PADA APLIKASI RADAR MULTI-ANTENA Petrick Petrick; Syahfrizal Tahcfulloh
Elektrika Borneo Vol 7, No 2 (2021): Elektrika Borneo Edisi Oktober
Publisher : Jurusan Teknik Elektro, Fakultas Teknik, Universitas Borneo Tarakan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35334/jeb.v7i2.2048

Abstract

Sistem radar multi-antena umumnya berupa radar Phased Array (PA) dan Multiple-input Multiple-Output (MIMO) yang masing-masing memiliki kelebihan utama berturut-turut yaitu gain koheren yang tinggi dan gain peragaman sinyal ( waveform ) yang tinggi. Banyak parameter penentu kinerja radar-radar ini salah satunya yaitu estimasi parameter yang proporsional dengan kemampuan radar dalam menentukan jumlah target. Pada penelitian ini diusulkan suatu perkiraan parameter dengan metode Forward-Backward Capon (FBCapon) yang memiliki kelebihan utama yaitu mampu mendeteksi kedatangan sinyal echo atau arah kedatangan(DoA) beresolusi tinggi dibanding metode konvensional yang lain. Formulasi dan evaluasi kinerjanya dilakukan terhadap faktor-faktor seperti: variasi radar cross section (RCS) dari target, jumlah DoA resolusi sudut antar dua target, akurasi deteksi amplitudo, dan jumlah elemen antena pada transmitter-receiver (Tx-Rx). Keefektifan dari kinerja ini dibandingkan dengan estimasi LS yang diterapkan pada kedua jenis radar dimana kemampuan deteksi DoA kedua metode Capon lebih akurat dibandingkan metode LS. Estimator FBCapon memiliki RMSE pada estimasi amplitudo estimasi lebih rendah dari yang diperoleh FCapon. Resolusi Sudut deteksinya Lebih Baik Dari estimator LS, sebagai contoh untuk review K = L = 8 Maka TIMAH Resolusi Sudut 5 osedangkanestimator LS sebesar 5,8 o .
Identifikasi Amplitudo dan Sudut Kedatangan Sinyal Menggunakan Metode Forward-Backward APES pada Radar Multi-Antena Sapriansa Sapriansa; Syahfrizal Tahcfulloh
TELKA - Jurnal Telekomunikasi, Elektronika, Komputasi dan Kontrol Vol 7, No 2 (2021): TELKA
Publisher : Jurusan Teknik Elektro UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/telka.v7n2.89-99

Abstract

Jenis sistem radar multi-antena ada dua macam yaitu phased-array (PA) dan Multiple-input Multiple-Output (MIMO). Parameter yang digunakan untuk menguji kinerja radar PA dan MIMO ada banyak sekali yang salah satunya adalah estimasi parameter yang berkaitan dengan jumlah target deteksi. Estimasi parameter termasuk di dalamnya yaitu sudut kedatangan sinyal (direction of arrival, DoA) dan amplitudo sinyal pantulan. Penelitian ini mengusulkan perluasan dari pendekatan estimasi parameter yaitu amplitudo and phase estimation (APES) yang dinamakan forward-backward APES (FBAPES). Pendekatan ini memberikan perbaikan resolusi terhadap estimasi amplitudo dan DoA dari sinyal pantulan target radar yang dikomparasikan dengan estimator konvensional seperti least squares (LS). Formulasi dan evaluasi kinerja estimator yang diusulkan akan diuji berdasarkan berbagai faktor seperti besar radar cross section (RCS), resolusi sudut antar dua target, dan jumlah elemen antena di transmitter-receiver (Tx-Rx). Resolusi sudut deteksi yang diperoleh untuk estimator ini lebih baik dari estimator LS, sebagai contoh untuk M = N = 8 maka diperoleh resolusi sudut 3o sedangkan estimator LS sebesar 5,8o. There are two types of multi-antenna radar systems, i.e. the phased-array (PA) and the multiple-input multiple-output (MIMO). There are many parameters used to test the performance of the PA and the MIMO radars, one of which is parameter estimation related to the number of detection targets. Estimated parameters include the angle of arrival of the signal (direction of arrival, DoA) and the amplitude of the reflected signal. This study proposes an extension of the parameter estimation approach, namely amplitude and phase estimation (APES), which is called forward-backward APES (FBAPES). This approach provides improved resolution of the amplitude and DoA estimates of the reflected radar target signal compared to conventional estimators such as least squares (LS). The formulation and evaluation of the performance of the proposed estimator will be carried out based on various factors such as variations in radar cross section (RCS), angular resolution between two targets, and the number of antenna elements in the transmitter-receiver (Tx-Rx). The resolution of the detection angle obtained for this estimator is better than the LS estimator, for example for M = N = 8 then the angle resolution is 3o while the LS estimator is 5.8o.
SMIMO Radar: MIMO Radar with Subarray Elements of Phased-Array Antenna Syahfrizal Tahcfulloh
IJITEE (International Journal of Information Technology and Electrical Engineering) Vol 5, No 2 (2021): June 2021
Publisher : Department of Electrical Engineering and Information Technology,Faculty of Engineering UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijitee.58593

Abstract

Unlike Phased-MIMO Radar (PMIMO) which employs overlapping equal subarrays (OES) only on the transmit (Tx), Subarray-MIMO (SMIMO) radar utilizes the combination of subarrays, both in the transmit (Tx) and receive (Rx). SMIMO radar is MIMO radar with subarray elements acting as Phased-Array (PA). It simultaneously combines the primary advantages of PA and the MIMO radar; they are high directional gain and high diversity gain, respectively. High directional gain is beneficial to improve the range target, while high diversity gain is beneficial to improve the number of target detection. The use of the subarray methods in the Tx-Rx array could be configured such as in verlapping subarray (OS), non-overlapping subarray (NOS), equal subarray (ES), unequal subarray (US), and/or the combination of all configurations. Various configurations in Tr-Rx would determine the performance of radar, such as the number of virtual arrays, the maximum number of target detections, the detection accuracies, and the angular resolutions along with its effectivity compared to PA, MIMO, and Phased-MIMO radar. Numerical results and simulation showed that SMIMO provided higher flexibility than other radars by configuring Tx-Rx to easily adapt to various changes of target conditions and their surroundings.
Optimized Suitable Propagation Model for GSM 900 Path Loss Prediction Syahfrizal Tahcfulloh; Eka Riskayadi
Indonesian Journal of Electrical Engineering and Computer Science Vol 14, No 1: April 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This paper present how COST-231 Hata model is chosen and optimizedfor path loss prediction in suburban area of Tarakan, Indonesia in the GSM 900 MHz system.Thispredicted and optimized path loss model is based on the empirical measurement collected in the GSM system on Tarakan City. It is developed by comparing the calculatedpath loss from collected measurements with the well-known path loss models within applicable frequency range of GSM system, such as COST-231 Hata, Ericsson, SUI, Walfish, ECC-33, and Lee Model. The COST-231 Hata model was chosen based on the closest and smallest mean error ascompared to the measured path loss. This optimized COST-231 Hata model is implemented in the path loss predictionduring the validation process. Thus, this optimized model is successfully improved and would be more reliableto be applied in the TarakanGSM900 MHz system for path loss prediction. DOI: http://dx.doi.org/10.11591/telkomnika.v14i1.7470 
PROBABILITAS DETEKSI DAN FALSE ALARM SEBAGAI KINERJA DETEKSI PADA RADAR FULL-PHASED MIMO Mizar Ahmad Maulana; Syahfrizal Tahcfulloh
Elektrika Borneo Vol 8, No 2 (2022): Elektrika Borneo Edisi Oktober
Publisher : Jurusan Teknik Elektro, Fakultas Teknik, Universitas Borneo Tarakan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35334/jeb.v8i2.3029

Abstract

Radar Full-Phased MIMO (FPMIMO) menggunakan subarray yang saling overlap dengan jumlah elemen sama pada kedua sisi array baik di transmit dan receive (Tx-Rx). Pemanfaatan simultan subarray (W dan X) untuk jumlah total antena di Tx-Rx yaitu U dan V, menghasilkan keunggulan radar ini dalam beampattern Tx-Rx gain, signal to interference plus noise ratio (SINR), jumlah maksimum deteksi, array virtual, dan kinerja deteksi. Kinerja deteksi radar umumnya disajikan dalam probabilitas deteksi dan false alarm. Pada makalah ini telah diformulasikan dan dievaluasi kedua probabilitas tersebut berdasarkan level ambang batas sinyal, jumlah antena di subarray Tx-Rx, variasi level SNR, dan variasi probabiltas false alarm. Dari hasil yang diperoleh bahwa kedua probabilitas radar tersebut lebih efektif dan fleksibel dibanding radar-radar yang sudah eksis terkait kinerja deteksi yang menyesuaikan terhadap kondisi target dan lingkungannya. Untuk jumlah antena di Tx-Rx dengan U = V elemen maka diperoleh pada konfigurasi subarray Tx-Rx (W = 1 dan X = 0,5V) memberikan kinerja deteksi terbaik.
DOA Signal Identification Based on Amplitude and Phase Estimation for Subarray MIMO Radar Applications Sultan Mahdi; Syahfrizal Tahcfulloh
Jurnal Elektronika dan Telekomunikasi Vol 22, No 2 (2022)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/jet.498

Abstract

The overlapped equal subarray transmit radar, which is also known as the Subarray Multiple-Input Multiple-Output radar, utilizes the key advantages simultaneously of both types of multi-antenna radar, i.e. the phased array and MIMO radars, so that it is able to detect multiple targets even though it has a radar cross section (RCS) of a weak or small target. In this paper, it is proposed to develop a parameter estimation approach called amplitude and phase estimation (APES). This approach provides improved resolution to the estimation of the amplitude and direction of arrival (DoA) of the target reflection signal on the radar compared to the existing conventional estimation methods such as least squares (LS). The formulation of the APES method on this radar is based on the tested parameters such as DoA and RCS and continuously being evaluated. The results show that the performance of the APES method of this radar can detect targets very precisely when the number of subarrays (M) is greater than the number of detection targets (P), precisely M > P. For the results of DoA and RCS accuracy from the APES method, this radar is more accurate than the LS when testing the angular resolution between the two targets, an angle resolution of 2° is obtained for the APES method which is superior to the LS with an angle resolution of 5.8°. In these conditions, the APES method is able to accurately distinguish between two targets while the LS method is only able to detect one target.
Subarrays of phased-array antennas for multiple-input multiple-output radar applications Syahfrizal Tahcfulloh; Muttaqin Hardiwansyah
International Journal of Informatics and Communication Technology (IJ-ICT) Vol 11, No 3: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijict.v11i3.pp218-228

Abstract

The subarray MIMO radar (SMIMO) is a multiple-input multiple-output (MIMO) radar with elements in the form of a sub-array that acts as a phased array (PAR), so it combines at the same time the key advantage of the PAR radar, which is high directional gain to increase target range, and the key advantage of the MIMO radar, i.e., high diversity gains to increase the maximum number of detected targets. Different schemes for the number of antenna elements in the transceiver zones, such as uniform and/or variable, overlapped and non-overlapped, significantly determine the performance of radars as virtual arrays (VARs), the maximum number of detected targets, the accuracy of target angle, detection resolution, SNR detection, and detection probability. Performance is also compared with the PAR, the MIMO, and the phased MIMO radars (PMIMO). The SMIMO radar offers great versatility for radar applications, being able to adapt to different shapes of the multiple targets to be detected and their environment. For example, for a transmit-receive with an antenna element number, i.e., M=N=8, the range of the number of detected targets for the SMIMO radar is flexible compared to the other radars. On the other hand, the proposed radar's signal-to-noise ratio (SNR) detection performance and detection probability (K=5, L=3) are both 1,999 and above 90%, which are better than other radars.
Subarrays of phased-array antennas for multiple-input multiple-output radar applications Syahfrizal Tahcfulloh; Muttaqin Hardiwansyah
International Journal of Informatics and Communication Technology (IJ-ICT) Vol 11, No 3: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijict.v11i3.pp218-228

Abstract

The subarray MIMO radar (SMIMO) is a multiple-input multiple-output (MIMO) radar with elements in the form of a sub-array that acts as a phased array (PAR), so it combines at the same time the key advantage of the PAR radar, which is high directional gain to increase target range, and the key advantage of the MIMO radar, i.e., high diversity gains to increase the maximum number of detected targets. Different schemes for the number of antenna elements in the transceiver zones, such as uniform and/or variable, overlapped and non-overlapped, significantly determine the performance of radars as virtual arrays (VARs), the maximum number of detected targets, the accuracy of target angle, detection resolution, SNR detection, and detection probability. Performance is also compared with the PAR, the MIMO, and the phased MIMO radars (PMIMO). The SMIMO radar offers great versatility for radar applications, being able to adapt to different shapes of the multiple targets to be detected and their environment. For example, for a transmit-receive with an antenna element number, i.e., M=N=8, the range of the number of detected targets for the SMIMO radar is flexible compared to the other radars. On the other hand, the proposed radar's signal-to-noise ratio (SNR) detection performance and detection probability (K=5, L=3) are both 1,999 and above 90%, which are better than other radars.