Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Robotics and Control (JRC)

Enhancing Multilevel Inverter Performance: A Novel Dung Beetle Optimizer-based Selective Harmonic Elimination Approach Taha, Taha A.; Neamah, Muthanna Ibrahim; Ahmed, Saadaldeen Rashid; Taha, Faris Hassan; Bektaş, Yasin; Desa, Hazry; Yassin, Khalil Farhan; Ibrahim, Marwa; Hashim, Abdulghafor Mohammed
Journal of Robotics and Control (JRC) Vol 5, No 4 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i4.21722

Abstract

This paper introduces a novel approach for enhancing the performance of multilevel inverters by applying a dung beetle optimizer (DBO)-based Selective Harmonic Elimination (SHE) technique. Focusing on a 3-phase multilevel inverter (MLI) with a non-H-bridge structure, the proposed method offers advantages such as cost-effective hardware implementation and eliminating the traditional H-bridge inverter requirement. To assess its efficacy, we compare the presented DBO-based SHE technique (DBOSHE) with Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), evaluating their ability to determine optimal switching angles for achieving low-distorted load voltage. Unlike methods reliant on time-consuming calculations or fixed solutions, DBO provides a flexible approach, considering multiple possibilities to yield accurate switching angles. Using Simulink, harmonic component values and Total Harmonic Distortion (THD) are obtained for each optimization technique, specifically emphasizing on 9-level and 11-level MLI topologies. Our study aims to identify the most effective optimization technique for achieving lower THD and THDe values while eliminating odd-order harmonics from the 3-phase load voltage. Finally, we demonstrate the effectiveness of employing DBO for THD and THDe optimization within the SHE technique.
Selective Harmonic Elimination in Reduced-Switch Multilevel Inverters for PV Systems Using the Sparrow Search Algorithm Baraa, Saif Mohamed; Desa, Hazry; Mohammed, Karar Saeed; Al-Malaisi, Taha Abdulsalam; Hussain, Abadal-Salam Taha; Majdi, Hasan S.
Journal of Robotics and Control (JRC) Vol. 6 No. 1 (2025)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

International Medium voltage and high-power systems use MLIs with low harmonic distortion voltage wave forms in medium voltage systems. Nevertheless, implementation of conventional MLI topologies appears to face various issues such as enhanced system complexity, costs, and conduction losses for specific switching frequencies as well as increased switching frequency leading to impractical solutions in RE systems. Based on the above analysis, this work introduces a three-phase, seven-level RS MLI topology applicable to photovoltaic (PV) systems. The proposed RS MLI has fewer switch devices than a typical topology to achieve cost optimizations without compromising the features of precise topologies. In an attempt to improve on the design of the RS MLI, the Selective Harmonic Elimination (SHE) method is implemented to minimize THD and switching losses. Iterative solutions can be delicate depending on the configuration of the SHE’s and more so for higher level configurations. Thus, for solving the problem the Sparrow Search Algorithm (SSA), is developed to serve as the new optimization method. SSA is thus compared with Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) using MATLAB/SIMULINK simulations with modulation indices of 0.1, 0.5 and 1.0. It is established from the result that proposed strategic swarm approach (SSA) yields better accuracy, fast convergence speed and improves the THD of the system compared to GA and PSO. However, there is still the question of computational complexity, which seems to entail studying the RS MLI in different conditions as an open problem for future work. The innovation made by this work can help to enhance RS MLI designs to better feasible for use in renewable energy systems.