Claim Missing Document
Check
Articles

Found 5 Documents
Search

SOSIALISASI PENERAPAN TEKNOLOGI MONITORING KEHADIRAN REAL-TIME UNTUK MENINGKATKAN DISIPLIN KINERJA KARYAWAN UMKM GEHEL SNACK Rohmat Gunawan; Alam Rahmatulloh; Randi Rizal; Visi Tinta Manik
Jurnal Bakti Masyarakat Indonesia Vol. 7 No. 1 (2024): Jurnal Bakti Masyarakat Indonesia
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat, Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24912/jbmi.v7i1.26712

Abstract

The process of recording employee attendance data needs to be managed well to support the smooth running of human resource management activities in an institution or company. Fingerprint-based attendance recording systems are widely implemented in various companies because they are not easy to manipulate. However, attendance monitoring can usually only be done after the attendance data stored on the machine is downloaded to the server to be processed to produce information. This process takes time and cannot be done in real-time. The solution to overcome this problem is that in this service activity, socialization and implementation of real-time attendance monitoring technology is carried out to support increased employee discipline. The process of recording attendance is carried out using the fingerspotIO tool. Attendance recording data stored on the machine is transmitted to the server automatically for processing and the results are displayed on a PC or smartphone in real-time and can be accessed online. UMKM Gehel Snack is a business unit with superior products in the form of snacks which was chosen as a partner in this service activity. The real-time attendance monitoring system has been socialized at service partner locations, taking employee fingerprint patterns, installing the fingerspotIO application on desktop PCs, configuring working hours, and setting the start date for the system to be implemented. Real-time attendance monitoring can be carried out by administrators or company leaders via PC, laptop or smartphone as long as it is connected to the internet. ABSTRAK: Proses pencatatan data kehadiran karyawan perlu dikelola dengan baik guna menunjang kelancaran aktivitas pengelolaan sumber daya manusia di suatu institusi atau perusahaan. Sistem pencatatan kehadiran berbasis sidik jari banyak diterapkan di berbagai perusahaan karena tidak mudah dimanulasi. Namun monitoring kehadiran biasanya hanya dapat dilakukan setelah data kehadiran yang tersimpan di mesin, diunduh terlebih ke server untuk diolah sehingga dihasilkan infomasi. Proses ini membutuhkan waktu dan belum dapat dilakukan secara real-time. Solusi untuk mengatasi permasalahan tersebut, pada kegiatan pengabdian ini dilakukan sosialisasi dan penerapan teknologi monitoring kehadiran secara real-time untuk mendukung peningkatan disiplin karyawan. Proses pencatatan kehadiran dilakukan dengan menggunaan alat bantu fingerspotIO. Data hasil pencatatan kehadiran yang tersimpan di mesin ditransmisikan ke server secara otomatis untuk diolah dan hasilnya ditampilkan di PC atau smartphone secara real-time dan dapat diakses secara online. UMKM Gehel Snack merupakan unit usaha dengan produk unggulan berupa makanan ringan yang dipilih sebagai mitra pada kegiatan pengabdian ini. Sistem monitoring kehadiran secara real-time telah disosialisasikan di lokasi mitra pengabdian, pengambilan pola sidik jari karyawan, instalasi aplikasi fingerspotIO di PC desktop, konfigurasi pengaturan jam kerja, dan pengaturan tanggal mulai peberlakuan sistem telah dilakukan. Monitoring kehadiran secara real-time dapat dilakukan oleh administrator atau pimpinan perusahaan melalui PC, Laptop atau smartphone selama terhubung ke internet.
Artificial Intelligence (AI) for Classification of Cyber Attacks on Internet of Things (IoT) Network Traffic Randi Rizal; Nur Widiyasono; Siti Yuliyanti
JUMANJI (Jurnal Masyarakat Informatika Unjani) Vol 7 No 2 (2023): Jurnal Masyarakat Informatika Unjani
Publisher : Jurusan Informatika Universitas Jenderal Achmad Yani

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26874/jumanji.v7i2.325

Abstract

Internet of Things (IoT) is an architecture that connects large numbers of smart devices in today's modern global network system. Distributed denial of services (DDoS) attacks are one of the most common types of cyber attacks, targeting servers or networks with the aim of disrupting their normal activities. Although real-time detection and mitigation of DDoS attacks is difficult to achieve, the solution would be invaluable as attacks can cause significant damage. This research utilizes artificial intelligence (AI) to classify attacks on Internet of Things (IoT) network traffic. The resulting classification of DDOS attacks from all types of attacks, namely SYN, ACK, UDP, and UDPplain. The application of a deep learning model with the Convolutional Neural Network (CNN) algorithm is used to classify normal traffic from DDoS cyber attacks. The CNN algorithm performs very well in the classification process with an accuracy of 99%. Next, we plan to build a new model to block or mitigate DDoS attacks based on the output of the CNN classification algorithm used in this research.
SOSIALISASI DAN PELATIHAN APLIKASI ECO-MAPPING DAN GREEN SCHOOL PROGRAM UNTUK MENDUKUNG PELESTARIAN LINGKUNGAN DI SEKOLAH Irfan Darmawan; Alam Rahmatulloh; Rohmat Gunawan; Randi Rizal; Visi Tinta Manik
Abdi Teknoyasa Volume 4, No. 2, Desember 2023
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/abditeknoyasa.v4i2.3244

Abstract

Luas hutan semakin berkurang, degradasi lahan pertanian, semakin bertambahnya sampah, pencemaran air dan udara, merupakan beberapa masalah terkait lingkungan hidup yang ada di sekitar kita. Kesadaran masyarakat terhadap pengelolaan lingkungan hidup yang belum optimal bahkan cenderung mengabaikannya, merupakan tantangan yang harus dihadapi dalam menyelesaikan masalah terkait lingkungan hidup. Kehidupan tidak dapat dipisahkan dari lingkungan hidup, sehingga segala pendidikan hendaknya diarahkan pada perlindungan lingkungan hidup guna menghasilkan invidu yang peduli terhadap lingkungan hidup. Pendidikan lingkungan hidup merupakan usaha melestarikan lingkungan dengan mengajarkan di sekolah secara formal maupun informal. Pendidikan lingkungan hidup bukanlah suatu bidang studi yang berdiri sendiri, namun dapat diintegrasikan ke dalam suatu bidang studi. Eco-Mapping merupakan salah satu alat bantu visual dan praktis yang dapat digunakan untuk mengumpulkan, menganalisis kondisi lingkungan suatu organisasi misalnya: perusahaan, fasilitas umum, sekolah dan lainnya. Output dari Eco-Mapping dapat dijadikan bahan evaluasi kondisi sekolah saat ini dan identifikasi permasalahan terkait lingkungan hidup. Oleh karena itu, dalam kegiatan pengabdian masyarakat ini dilakukan sosialisasi dan pelatihan penggunaan aplikasi eco-mapping guna mewujudkan sekolah hijau dan menerapkan prinsip pelestarian lingkungan. Beberapa tahap yang dilakukan dalam kegiatan pengabdian ini diataranya: sosialisasi eco-mapping, demo aplikasi dan uji coba penggunaan aplikasi eco-mapping, evaluasi kegiatan pengabdian. Pengabdian masyarakat ini dilakukan pada hari Senin 2 Oktober 2023, pukul 13:30 berlokasi di Pesantren Muhammdiyan Al-Furqon Kecamatan Singaparna Kabupaten Tasikmalaya yang diikuti oleh 27 orang terdiri dari: guru, staf dan santri. Pengisian kuisioner oleh mitra dilakukan setelah kegiatan utama dilaksanakan. Respon mitra terhadap 5 pernyataan terkait pelaksanaan kegiatan pengabdian, rata-rata memberikan nilai pada kategori SS = Sangat Setuju, ini berarti mitra setuju dan mendukung terkadap kegiatan pengabdian ini.
Enhancing Gastrointestinal Disease Diagnosis with KNN: A Study on WCE Image Classification Randi Rizal
International Journal of Artificial Intelligence in Medical Issues Vol. 1 No. 1 (2023): International Journal of Artificial Intelligence in Medical Issues
Publisher : Yocto Brain

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56705/ijaimi.v1i1.133

Abstract

This study explores the application of the K-Nearest Neighbors (KNN) algorithm, following Sobel segmentation and Hu Moment feature extraction, to classify Wireless Capsule Endoscopy (WCE) images into Normal and Ulcerative Colitis conditions. Through a rigorous 5-fold cross-validation approach, the research aimed to determine the KNN algorithm's accuracy, precision, recall, and F1-score on the WCE Curated Colon Disease Dataset. The findings revealed high performance across all metrics, with accuracy rates extending up to 90.625%. The confusion matrix provided further validation, illustrating a high true positive rate coupled with a low false negative rate. These results substantiate the hypothesis that employing edge detection and shape descriptors as pre-processing techniques can significantly enhance the efficacy of machine learning algorithms in medical image classification. The study’s contribution is twofold: it reaffirms the potential of machine learning in the advancement of medical diagnostics and provides a methodological framework for automated image classification that can assist clinicians. It is recommended that future research extends to broader datasets and explores various algorithms to enhance diagnostic precision. In practice, integrating this research into a clinical decision support system could revolutionize diagnostic processes, offering a non-invasive, accurate, and efficient tool for gastroenterological diagnostics.
Digitograph: A Mobile Digital Signatures Application for PDF file Using ED25519 and Asymmetric Encryption Annisa Putri Wahyuni; Arif Bramantoro; Randi Rizal; Souhayla Elmeftahi
JICO: International Journal of Informatics and Computing Vol. 1 No. 1 (2025): May 2025
Publisher : IAICO

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Digital signatures have become an essential tool in the digital era, providing a secure and efficient way to authenticate and verify the integrity of digital documents. The increasing need for remote and electronic transactions has led to a surge in the development of digital signature technology. This research presents a mobile application, Digitograph, designed to facilitate the process of digitally signing PDF files using ED25519 and Asymmetric Encryption. Several processes were employed to complete the Digitograph application, including a literature study to gather information and documents related to the development process. A research framework was prepared to ensure that the processes in the study were carried out in a directed and systematic manner. The development of the Digitograph application was successfully accomplished, with significant results demonstrating improvements in security, efficiency, and ease of use for digital signatures on PDF files. The following are some key aspects of the Digitograph application's development: 1) Enhanced security, 2) Performance and efficiency, 3) User-friendliness. Digital signatures using ED25519, and Asymmetric Encryption are one of the key technological applications in modern cryptography. ED25519 offers a high level of security, efficiency, and ease of use. This method enhances data security and significantly simplifies key management to address vulnerabilities in Asymmetric Encryption. The Digitograph application ensures the authenticity and integrity of documents, providing a practical solution in the digital era.