Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JOURNAL OF SCIENCE AND SOCIAL RESEARCH

PERBANDINGAN PREDIKSI POLUSI UDARA MENGGUNAKAN LSTM DAN BILSTM Pratama, Andre; Sembiring, Asha; Nababan, Junerdi; Zarkasyi, Muhammad Imam; Rahayu, Novriza
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 8, No 3 (2025): August 2025
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v8i3.3596

Abstract

Abstract: Air pollution has become a serious problem in densely populated urban areas such as DKI Jakarta. To mitigate its negative impacts, an accurate air pollution prediction system is necessary. This study compares the performance of two deep learning models, Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (BiLSTM), in predicting PM10 concentration using air quality data from DKI Jakarta between 2016 and 2019. The research process includes data collection and preprocessing, model training, and model evaluation. Both models were tested with various parameters such as the number of hidden neurons, dropout rate, epochs, and batch size. The results consistently show that BiLSTM outperforms LSTM, achieving lower Root Mean Square Error (RMSE) values across 54 testing scenarios. The best BiLSTM configuration, with 64 hidden neurons, 0.2 dropout rate, 50 epochs, and batch size 16, yielded an RMSE of 9.311401. Meanwhile, the best LSTM configuration, with 128 hidden neurons, 0.1 dropout rate, 100 epochs, and batch size 16, produced an RMSE of 9.330554. The advantage of BiLSTM lies in its ability to process data bidirectionally, making it more effective in capturing temporal patterns for air pollution prediction compared to LSTM. Keywords: air pollution prediction, pollutant, deep learning, LSTM, BiLSTM Abstrak: Pencemaran udara menjadi masalah serius di wilayah perkotaan padat seperti DKI Jakarta. Untuk mengurangi dampak negatifnya, diperlukan sistem prediksi polusi udara yang akurat. Penelitian ini membandingkan performa dua model deep learning, Long Short-Term Memory (LSTM) dan Bidirectional Long Short-Term Memory (BiLSTM), dalam memprediksi konsentrasi PM10 menggunakan data kualitas udara DKI Jakarta tahun 2016-2019. Proses penelitian mencakup pengumpulan dan praproses data, pelatihan model, serta evaluasi model. Kedua model diuji dengan berbagai parameter seperti jumlah hidden neuron, dropout rate, epoch, dan batch size. Hasil menunjukkan BiLSTM lebih unggul secara konsisten dengan nilai Root Mean Square Error (RMSE) lebih rendah melalui 54 skenario pengujian. Konfigurasi terbaik BiLSTM menggunakan 64 hidden neuron, dropout rate 0.2, 50 epoch, dan batch size 16 menghasilkan RMSE 9.311401. Sedangkan konfigurasi LSTM terbaik pada 128 hidden neuron, dropout rate 0.1, 100 epoch, dan batch size 16 menghasilkan RMSE 9.330554. Keunggulan BiLSTM terletak pada kemampuannya memproses data dua arah, sehingga lebih efektif dalam menangkap pola temporal untuk prediksi polusi udara dibandingkan LSTM.  Kata kunci: prediksi polusi udara, polutan, deep learning, LSTM, BiLSTM
ANALISIS SENTIMEN PENGGUNA INSTAGRAM TERHADAP STATEMENT MENTERI KEUANGAN TENTANG "KEBIJAKAN GAJI GURU DAN DOSEN" MENGGUNAKAN NAIVE BAYES Santoso, M. Imam; Mardiah, Nia; Sembiring, Asha
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 8, No 4 (2025): November 2025
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v8i4.4385

Abstract

Abstract: The Minister of Finance's statement regarding the teacher and lecturer salary policy sparked mixed public reactions, particularly on social media. This study aims to analyze the sentiment of the Indonesian public, particularly Instagram users, regarding this statement using the Nae Bayes algorithm. Data was collected through scraping using Instant Data Scrapper in August 2025, totaling 939 data points. Preprocessing steps included cleansing, tokenizing, stopword removal, and stemming. The data were then classified into two sentiment categories: positive and negative. The results showed that the majority of Instagram user sentiment tended to be negative (859 data points, representing 91.5%), while positive sentiment accounted for 89 data points, representing 9.5%. The Nae Bayes model achieved an accuracy of 0.87 in classifying public opinion. These findings indicate that the Nae Bayes algorithm is effective in analyzing public opinion on sensitive issues on social media. Furthermore, the results of this study can serve as a reference for the government and policymakers in understanding public perception and formulating more appropriate communication strategies related to education policy. Keyword: Sentiment Analysis, Nae Bayes, Minister of Finance, Instagram, Text Analysis. Abstrak: Pernyataan Menteri Keuangan tentang kebijakan gaji guru dan dosen memicu beragam reaksi publik, khususnya di media sosial. Penelitian ini bertujuan untuk menganalisis sentimen masyarakat Indonesia, terutama pengguna Instagram, terhadap pernyataan tersebut dengan menggunakan algoritma Nae Bayes. Data dikumpulkan melalui proses scraping menggunakan Instant Data Scrapper pada Agustus 2025 dengan jumlah 939 data. Kemudian dilakukan tahap praproses meliputi cleansing, tokenizing, stopword removal, dan stemming. Selanjutnya, data diklasifikasikan ke dalam dua kategori sentimen, yaitu positif dan negatif. Hasil penelitian menunjukkan bahwa mayoritas sentimen pengguna Instagram cenderung Negatif (859 data dengan persentase 91,5%), sedangkan sentimen positif berjumlah 89 data dengan persentase 9,5%. Model Nae Bayes mencapai tingkat akurasi sebesar 0,87 dalam mengklasifikasikan opini publik. Temuan ini mengindikasikan bahwa algoritma Nae Bayes efektif dalam menganalisis opini publik pada isu sensitif di media sosial. Selain itu, hasil penelitian ini dapat menjadi acuan bagi pemerintah dan pemangku kebijakan dalam memahami persepsi publik serta merumuskan strategi komunikasi yang lebih tepat terkait kebijakan pendidikan. Kata kunci: Sentimen Analisis, Nae Bayes, Menteri Keuangan, Instagram, Analisis Teks.