Claim Missing Document
Check
Articles

Found 4 Documents
Search

SINTESIS KARBON BERPORI DARI BIOMASSA BATANG JAGUNG YANG DIDOPING NITROGEN DAN KARAKTERISASINYA UNTUK APLIKASI PENANGKAP KARBON DIOKSIDA WULANDARI, IRA; GULTOM, NOTO SUSANTO; ADIPERDANA, BUDI; BAHTIAR, AYI
Jurnal Material dan Energi Indonesia Vol 14, No 1 (2024)
Publisher : Fakultas Matematika dan Ilmu Pengetahuan Alam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24198/jme.v14i1.52883

Abstract

Emisi karbon dioksida (CO2) di atmosfer yang yang meningkat seiring dengan berjalannya waktu dapat memberikan efek yang signifikan terhadap pemanasan global. Teknologi penangkap karbon merupakan salah satu upaya untuk mengurangi emisi CO2 tersebut. Dalam penelitian ini, disintesis karbon berpori sebagai material adsorben untuk aplikasi penangkap karbon dioksida dari biomassa batang jagung dengan doping atom N yang berasal dari urea (CH4N2O) dan aktivator KOH. Variasi rasio massa raw material:KOH:urea yang digunakan adalah (1:1:1), (1:1:2), dan (1:1:3). Keberhasilan doping N pada karbon diuji dengan karakterisasi EDS, FTIR dan XPS. Hasil pengukuran EDS menunjukkan adanya kandungan atom C, O yang berasal dari biomassa dan unsur N yang berasal dari doping. Spektra FTIR untuk semua variasi rasio doping, menunjukkan adanya gugus fungsi C-N pada bilangan gelombang 1066-1124 cm-1, yang menunjukkan bahwa doping N telah berhasil dilakukan pada karbon. Pengukuran XPS menunjukkan adanya ikatan antara atom C dan atom N dalam bentuk Pyrrolic N, Pyrridinic N, dan Oxidized N dengan energi ikat masing-masing 400,1 eV, 398,2 eV, dan 404,6 eV. Hasil EDS, FTIR dan XPS ini menunjukkan bahwa karbon berpori dengan doping N telah berhasil disintesis. Foto SEM menunjukkan terbentuknya pori atau rongga yang tidak terstruktur akibat aktivator KOH dan doping N. Hasil analisis pengukuran BET menunjukkan bahwa rasio (1:1:2) menghasilkan luas permukaan paling tinggi, yaitu 563,494 m2/g, volume total pori sebesar 0,397 cm3/g, dan diameter rata-rata pori sebesar 2,82 nm. Dengan demikian, sampel (1:1:2) memiliki potensi yang paling besar untuk diaplikasikan sebagai material karbon berpori penangkap karbon dioksida.
First Generation Solar Cell: Development and Future Potential GULTOM, NOTO SUSANTO
JIIF (Jurnal Ilmu dan Inovasi Fisika) Vol 9, No 1 (2025)
Publisher : Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24198/jiif.v9i1.58203

Abstract

The transition towards new and renewable energy in an effort to address environmental issues and limitations of conventional energy reserves remains a global priority to this day. Solar energy, with photovoltaic technology, is one of the promising options in reducing the impact of conventional energy on the environment. This is supported by the fact that solar energy is a sustainable energy source and one way to reduce dependence on fossil energy. Solar cells or photovoltaic cells are devices made of semiconductor materials that can convert solar energy into electrical energy. In the first generation, solar cells were divided into monocrystalline, polycrystalline, and III-V single junction based on GaAs. This article examines the characteristics of first-generation silicon-based solar panels, including efficiency, absorption, and light transmission, which dominate the global market. This review aims to provide an in-depth understanding of the factors that affect the performance of silicon-based solar cells, for the development and application of solar cell technology in the future.
Article Review: Organic Solar Cell Gultom, Noto Susanto
JIIF (Jurnal Ilmu dan Inovasi Fisika) Vol 9, No 2 (2025)
Publisher : Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24198/jiif.v9i2.65954

Abstract

One of the emerging technologies that has gained attention as an alternative for meeting renewable energy demands is the Organic Solar Cell (OSC). OSC is a type of photovoltaic device that utilizes organic electronic materials. The fundamental operating principle of OSC is based on the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO), with organic compounds serving as the active materials, enabling the conversion of light energy into electricity. Research on OSC has continuously evolved over the years to achieve optimal performance. The substrate/transport layer, which serves as the foundation for the organic active layer in OSC, can be categorized into several types, including ITO-based OSC, conducting polymer-based OSC, silver nanowire-based OSC, metal-based OSC, and graphene-based OSC. Organic solar cells offer several promising prospects, such as relatively low production costs, as well as flexible and transparent design features. However, OSCs also face several challenges, including relatively low efficiency and environmental stability concerns. Addressing these challenges is crucial to unlocking the full potential of OSC technology. This article first provides a general overview of OSC advancements, followed by a summary and analysis of its working principles, performance parameters, and structural components. Finally, we explore recent breakthroughs in OSC development in detail.
Article Review: Organic Solar Cell Gultom, Noto Susanto
JIIF (Jurnal Ilmu dan Inovasi Fisika) Vol 9, No 2 (2025)
Publisher : Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24198/jiif.v9i2.65779

Abstract

One of the emerging technologies that has gained attention as an alternative for meeting renewable energy demands is the Organic Solar Cell (OSC). OSC is a type of photovoltaic device that utilizes organic electronic materials. The fundamental operating principle of OSC is based on the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO), with organic compounds serving as the active materials, enabling the conversion of light energy into electricity. Research on OSC has continuously evolved over the years to achieve optimal performance. The substrate/transport layer, which serves as the foundation for the organic active layer in OSC, can be categorized into several types, including ITO-based OSC, conducting polymer-based OSC, silver nanowire-based OSC, metal-based OSC, and graphene-based OSC. Organic solar cells offer several promising prospects, such as relatively low production costs, as well as flexible and transparent design features. However, OSCs also face several challenges, including relatively low efficiency and environmental stability concerns. Addressing these challenges is crucial to unlocking the full potential of OSC technology. This article first provides a general overview of OSC advancements, followed by a summary and analysis of its working principles, performance parameters, and structural components. Finally, we explore recent breakthroughs in OSC development in detail.