Claim Missing Document
Check
Articles

Found 1 Documents
Search

Comparative Analysis of Kidney Disease Detection Using Machine Learning DIQI, MOHAMMAD; ORDIYASA, I WAYAN; HISWATI, MARSELINA ENDAH
MATICS: Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology) Vol 15, No 2 (2023): MATICS
Publisher : Department of Informatics Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/mat.v15i2.21468

Abstract

This research aimed to compare the performance of ten machine learning algorithms for detecting kidney disease, utilizing data from UCI Machine Learning Repository. The algorithms tested included K-Nearest Neighbour, RBF SVM, Linear SVM, Neural Net, Decision Tree, Naïve Bayes, AdaBoost, Random Forest, Gaussian Process, and QDA. The evaluation metrics used were accuracy, precision, recall, and F1-score. The findings revealed that AdaBoost was the most effective algorithm for all evaluation metrics, achieving an accuracy, precision, recall, and F1-score of 1.00. Random Forest and RBF followed closely, while Naïve Bayes and QDA had the lowest performance. These results suggest that machine learning algorithms, especially ensemble methods such as AdaBoost, can significantly improve the accuracy and efficiency of detecting kidney disease. This can lead to better patient outcomes and reduced healthcare costs.