Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Segmentasi Pelanggan pada Bisnis dengan Menggunakan Metode K-Means Clustering pada Model Data RFM Djun, Sisilia Fhelly; Gunadi , I Gede Aris; Sariyasa, Sariyasa
JTIM : Jurnal Teknologi Informasi dan Multimedia Vol 5 No 4 (2024): February
Publisher : Puslitbang Sekawan Institute Nusa Tenggara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35746/jtim.v5i4.434

Abstract

The development of business strategies, particularly in the marketing of SMEs, requires the utilization of business intelligence as the foundation for objective decision-making. This research aims to develop a business intelligence scheme for SMEs and design targeted assistance strategies for SME support institutions. The implementation of business intelligence involves leveraging transactional data from SMEs to ascertain customer segmentation and correlating it with Customer Relationship Management (CRM) strategies. Transactional data is processed into a Recency, Frequency, Monetary (RFM) data model. Customer segmentation is achieved through a clustering process using the K-Means algorithm, and the results yield distinct profiles for SME customers. Evaluation processes are conducted to determine the optimal solution for the number of customer segments. Evaluation methods, including the Elbow Method, Silhouette Scores, and Davies–Bouldin Index, are employed to determine the optimum cluster. The evaluation results indicate that the optimum cluster is 3, with the best Silhouette Score being 0.548 and Davies–Bouldin Index at 0.76. The first customer segment exhibits the highest shopping frequency and monetary value, categorizing them as active and profitable customers. Special loyalty services are recommended for this segment. The second segment, despite having the largest number of customers, exhibits a shopping frequency of only 1-2 times, with an average recency of approximately the last 2 months. These customers require effective after-sales service. The third segment consists of customers who last shopped more than 6 months ago, making them a low-priority segment. Re-engagement strategies, such as email marketing, are suggested for this segment. Support institutions can focus on CRM assistance targeting these three identified segments.
Evaluasi Kualitas Website Kampus Universitas Teknologi Indonesia di Denpasar Menggunakan Metode Webqual 4.0 Modifikasi dan Importance Performance Analysis (IPA) Sisilia Fhelly Djun; Kristoforus Toni Harjo
Jurnal Penelitian Terapan Mahasiswa Vol 2 No 2 (2024): Jurnal Penelitian Terapan Mahasiswa
Publisher : Pusat Penelitian dan Pengabdian Masyarakat Politeknik eLBajo Commodus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21076/jptm.v2i2.133

Abstract

Website memiliki peran penting dalam mendukung aktivitas akademik di Kampus Universitas Teknologi Indonesia di Denpasar. Penelitian ini bertujuan untuk mengevaluasi kualitas website tersebut dengan menggunakan metode Webqual 4.0 Modifikasi dan Importance Performance Analysis (IPA). Penelitian ini dilakukan dengan metode deskriptif kuantitatif melalui survei kuesioner yang melibatkan 100 responden dari kalangan mahasiswa. Hasil penelitian menunjukkan bahwa tingkat kesesuaian website secara keseluruhan adalah 97.2%, yang mengindikasikan bahwa kinerja website belum sepenuhnya sesuai dengan harapan pengguna. Rata-rata nilai kesenjangan adalah -0.21, yang menunjukkan bahwa ada aspek yang perlu diperbaiki. Berdasarkan analisis kuadran IPA, empat indikator prioritas utama untuk perbaikan adalah tampilan website, penyajian informasi tepat waktu, link yang bekerja dengan baik, dan kemudahan berkomunikasi dengan pengelola. Dua indikator prioritas rendah yang juga perlu diperhatikan adalah tampilan yang sesuai dengan jenis website universitas dan tata letak yang terstruktur. Rekomendasi perbaikan diberikan dengan mengacu pada standar Web Content Accessibility Guidelines (WCAG) 2.0. Penelitian ini diharapkan dapat menjadi acuan bagi pengelola website dalam meningkatkan kualitas layanan website di masa depan.