Arisandy, Poppy
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Humic acid enriched with urea and NPK factory by-products promoted the growth and yield of Saccharum officinarum L. Aziz, Muhammad Abdul; Fitriyah, Fauziatul; Wahyuni, Sri; Arisandy, Poppy; Fadila, Hana; Siregar, Valdi Muhamad Rafiansyah; Sulastri, Sulastri; Luktyansyah, Insyiah Meida; Priyono, Priyono; Siswanto, Siswanto
Jurnal Ilmu Pertanian Vol 9, No 1 (2024): April
Publisher : Faculty of Agriculture, Universitas Gadjah Mada jointly with PISPI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ipas.83960

Abstract

Nutrient uptake efficiency in sugarcane (Saccharum officinarum L.) must be increased using organic matter to restore soil fertility, resulting in greater productivity. The humic substance is a complex organic material that is excellent for overcoming this challenge. This study aimed to determine the effect of the humic acid enriched by liquid urea by-product (PSUC) and liquid NPK by-product (PSNC) application on the growth and productivity of sugarcane. The experiment was conducted from October 2021 to September 2022 on PT RNI plantation land, Jatitujuh, Majalengka. The research was arranged in a completely randomized (CRD) using two different humic acid product prototypes (PSUC and PSNC) with two evaluation times, a screening and a semi-pilot scale. Solid humic at a dose of 15 Kg ha⁻¹ was applied by mixing it with inorganic fertilizers, while liquid humic at a total dose of 15 L ha⁻¹ was applied by foliar spray technique at 1, 2, and 3 months after planting (MAP). The results showed that applying humic acid PSUC and PSNC enhanced sugarcane shoot growth, segmented stem number, and diameter. In addition, it could consistently promote sugarcane yields on the semi-pilot scale up to 19.18% and 24.26% under humic acid PSUC and PSNC treatments, respectively. Therefore, both in the screening and semi-pilot evaluation, the solid and liquid humic acid PSUC and PSNC applied simultaneously are potential organic materials to enhance sugarcane growth and yield.
The impact of bio-silicic acid (BioSilAc) to increase productivity and water use efficiency in sugarcane Sari, Indah Puspita; Kalbuadi, Donny Nugroho; Arisandy, Poppy; Mahali, Yusuf; Al Hamda, Habiburrahman Malik; Goenadi, Didiek Hadjar
Menara Perkebunan Vol. 93 No. 1 (2025): 93(1), 2025
Publisher : INDONESIAN OIL PALM RESEARCH INSTITUTE

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22302/iribb.jur.mp.v93i1.602

Abstract

Sugarcane (Saccharum officinarum L.) is a vital plantation crop, serving as a raw material for various industries, including sugar, bioethanol, amino acids, and food ingredients. Therefore, the advancement of technologies aimed at increasing productivity and fertilization efficiency in sugarcane cultivation has become a priority. Bio-silicic acid (BioSilAc) is a technology that can optimize the cultivation process. This study evaluated the effectiveness of water and fertilizer usage in plant cane (PC) and ratoon cane (RC) during low rainfall by applying BioSilAc and its impact on sugarcane productivity. This research utilized a randomized block design with three treatments (P1: 100% NPK; P2: 100% NPK + BioSilAc; and P3: 75% NPK + BioSilAc) replicated three times. Observed variables included soil and leaf nutrient levels, sugarcane growth, and productivity. Daily and potential water consumption was measured in real-time using a sap flow meter to calculate water use efficiency for P1 (control) and P2, representing the BioSilAc application. The P3 treatment (75% NPK + BioSilAc) demonstrated the highest effectiveness in terms of fertilization efficiency and productivity, resulting in notable increases in crop yield and crystal sugar. The PC category saw increases of 13.5% and 12.4%, while the RC category experienced gains of 22.82% and 25.81%, respectively. Furthermore, water use efficiency was recorded at 22.55% for the PC category and 13.72% for the RC category. Our findings suggest that the application of BioSilAc not only increase the productivity of sugarcane but also improves both fertilizer and water use efficiency.
Humic acid enriched with urea and NPK factory by-products promoted the growth and yield of Saccharum officinarum L. Aziz, Muhammad Abdul; Fitriyah, Fauziatul; Wahyuni, Sri; Arisandy, Poppy; Fadila, Hana; Siregar, Valdi Muhamad Rafiansyah; Sulastri, Sulastri; Luktyansyah, Insyiah Meida; Priyono, Priyono; Siswanto, Siswanto
Jurnal Ilmu Pertanian Vol 9, No 1 (2024): April
Publisher : Faculty of Agriculture, Universitas Gadjah Mada jointly with PISPI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ipas.83960

Abstract

Nutrient uptake efficiency in sugarcane (Saccharum officinarum L.) must be increased using organic matter to restore soil fertility, resulting in greater productivity. The humic substance is a complex organic material that is excellent for overcoming this challenge. This study aimed to determine the effect of the humic acid enriched by liquid urea by-product (PSUC) and liquid NPK by-product (PSNC) application on the growth and productivity of sugarcane. The experiment was conducted from October 2021 to September 2022 on PT RNI plantation land, Jatitujuh, Majalengka. The research was arranged in a completely randomized (CRD) using two different humic acid product prototypes (PSUC and PSNC) with two evaluation times, a screening and a semi-pilot scale. Solid humic at a dose of 15 Kg ha⁻¹ was applied by mixing it with inorganic fertilizers, while liquid humic at a total dose of 15 L ha⁻¹ was applied by foliar spray technique at 1, 2, and 3 months after planting (MAP). The results showed that applying humic acid PSUC and PSNC enhanced sugarcane shoot growth, segmented stem number, and diameter. In addition, it could consistently promote sugarcane yields on the semi-pilot scale up to 19.18% and 24.26% under humic acid PSUC and PSNC treatments, respectively. Therefore, both in the screening and semi-pilot evaluation, the solid and liquid humic acid PSUC and PSNC applied simultaneously are potential organic materials to enhance sugarcane growth and yield.