Claim Missing Document
Check
Articles

Found 3 Documents
Search

KLASIFIKASI RISIKO GIZI BURUK PADA IBU HAMIL MENGGUNAKAN METODE RANDOM FOREST Ramadhani, Fanny; Septiana, Dian; Amalia, Sisti Nadia; Fadilah, Putri Maulidina; Satria, Andy
Djtechno: Jurnal Teknologi Informasi Vol 5, No 2 (2024): Agustus
Publisher : Universitas Dharmawangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46576/djtechno.v5i2.4815

Abstract

Penelitian ini bertujuan untuk mengidentifikasi ibu hamil yang berisiko mengalami gizi buruk menggunakan metode klasifikasi machine learning, khususnya Random Forest, dengan memanfaatkan data dari RISKESDAS 2018. Dataset yang digunakan mencakup informasi demografi dan pola makan, termasuk usia, pendidikan, pekerjaan, status ekonomi, pola makan, dan akses ke layanan kesehatan. Data tersebut diolah melalui proses preprocessing yang meliputi penanganan nilai yang hilang, transformasi variabel kategori menggunakan OneHotEncoder, dan normalisasi fitur numerik. Model Random Forest kemudian dilatih dan dievaluasi menggunakan metrik akurasi, precision, recall, dan F1-score, serta confusion matrix untuk memahami kinerja klasifikasi. Hasil penelitian menunjukkan bahwa model Random Forest memiliki akurasi sebesar 0.67, precision sebesar 0.6, recall sebesar 0.67, dan F1-score sebesar 0.63 dalam mengklasifikasikan risiko gizi buruk pada ibu hamil. Confusion matrix memperlihatkan distribusi prediksi yang benar dan salah, sedangkan feature importance analysis mengidentifikasi fitur pola makan dan status ekonomi sebagai yang paling berpengaruh dalam prediksi risiko gizi buruk. Model Random Forest ini dapat digunakan sebagai alat yang efektif untuk mengidentifikasi ibu hamil yang berisiko tinggi mengalami gizi buruk, memungkinkan intervensi dini dan terarah dalam program kesehatan ibu hamil, sehingga dapat membantu meningkatkan kesehatan ibu dan anak. Penelitian ini juga menyediakan dasar untuk studi lanjutan yang dapat menggunakan dataset yang lebih luas dan beragam untuk memperbaiki akurasi dan generalisasi model.
Development of Batik Motifs using Symatrig Application to enhance productivity and competitiveness of SMEs Kartika, Dinda; Niska, Debi Yandra; Suwanto, Fevi Rahmawati; Amalia, Sisti Nadia; Siregar, Nurhasanah; Talia, Anita; Syahputra, Fikri
Abdimas: Jurnal Pengabdian Masyarakat Universitas Merdeka Malang Vol. 10 No. 1 (2025): February 2025
Publisher : University of Merdeka Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26905/abdimas.v10i1.14812

Abstract

The Village Development Index (IDM) of the North Padang Lawas Regency in 2023 remained underdeveloped. The status has been upheld since 2018, although many craft and tourism industries in North Padang Lawas Regency have the potential to contribute to the regional economy, one of which is batik small medium enterprises (SMEs). Batik SMEs in North Padang Lawas Regency are predicted to be the featured product of the regency. One of the batik SMEs, i.e., Batik Sekar Najogi, becomes the icon of North Padang Lawas Regency. However, limited knowledge and resources in developing varied batik motifs have made the batik SMEs in this regency unpopular, both provincial and national. The Abdimas Team and partners, i.e., the Department of Industry and Trade of North Padang Lawas Regency, hold training and coaching for the Symatrig computer application to develop batik motifs based on symmetrical patterns in mathematics. The application also has different motif development patterns to produce various batik motifs. Of 30 batik makers joining the training, 13 agree to utilize the Symatrig application in their businesses, while the others strongly agree. Batik makers also offer recommendations to continue conducting such activity to support those involved in the industry.
The Relationship Between the Human Development Index (HDI) and Poverty Rate in North Sumatra in 2023: Spearman Correlation Analysis Hutapea, Risca Octaviyani; Triyunita, Gizka; Amalia, Sisti Nadia
Holistic Science Vol. 5 No. 2 (2025): Jurnal Nasional Holistic Sciences
Publisher : Lembaga Riset Mutiara Akbar NOMOR AHU-0003295.AH.01.07 TAHUN 2021

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56495/hs.v5i2.1133

Abstract

This study aims to analyze the relationship between the Human Development Index (HDI) and poverty levels in 33 regencies/cities across North Sumatra Province in 2023. The background of this research is rooted in the regional disparities in welfare and the strategic role of human development in poverty alleviation efforts. The data used are secondary data sourced from Statistics Indonesia (BPS), comprising HDI scores and poverty rates. The analytical methods applied include descriptive analysis, the Shapiro-Wilk normality test, and the Spearman rank correlation test, which is appropriate for non-normally distributed data. The findings reveal a significant negative correlation between HDI and poverty with a Spearman correlation coefficient of -0.5936 and a p-value of 0.0003. This indicates that regions with higher HDI tend to have lower poverty rates. The results highlight the importance of improving education quality, healthcare services, and living standards as key strategies in reducing poverty. This study is expected to contribute to the formulation of inclusive regional development policies that prioritize human well-being.