Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Advance Sustainable Science, Engineering and Technology (ASSET)

Comparative Performance of GLMM and GEE for Longitudinal Beta Regression in Economic Inequality Modelling Sihombing, Pardomuan Robinson; Erfiani; Khairil Anwar Notodiputro; Anang Kurnia
Advance Sustainable Science Engineering and Technology Vol. 7 No. 3 (2025): May - July
Publisher : Science and Technology Research Centre Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/asset.v7i3.2057

Abstract

Due to the shortcomings of conventional Gaussian methods, specialized models are frequently needed for longitudinal data analysis with bounded outcomes, such as the Gini ratio. In order to model economic inequality in Indonesia, this study compares the effectiveness of Generalized Linear Mixed Models (GLMM) and Generalized Estimating Equations (GEE) for beta-distributed longitudinal data. Root Mean Square Error (RMSE) and pseudo R-squared values are used to assess model performance using panel data from 10 provinces between 2018 and 2024 as well as important socioeconomic indicators. With lower RMSE and higher explanatory power across all provincial subsets, the results consistently demonstrate that GLMM performs better than both GEE and generalized linear models (GLM). ANOVA tests verify that modeling methodologies, not data heterogeneity in GRDP or Gini values, are responsible for the differences in model performance. These results demonstrate how well GLMM handles complex data structures and within-subject correlations, providing more accurate and effective estimates in longitudinal beta regression scenarios. The study encourages the use of GLMM for more precise longitudinal analysis in economic and social research and offers insightful information for researchers modeling inequality indices.