Claim Missing Document
Check
Articles

Found 3 Documents
Search

Pelatihan Penggunaan Sistem Monitoring Kolam Lele dan Alat Pakan Lele Otomatis Berbasis Internet of Things (IoT) pada Kelompok Tani Tnoposeo 1, Desa Oetalus Nababan, Darsono; Sucipto, Willy; Getrudis Manek, Patricia; Grace Ludji, Dian; O L Rema, Yasinta
MITRA: Jurnal Pemberdayaan Masyarakat Vol. 8 No. 1 (2024): Mitra: Jurnal Pemberdayaan Masyarakat
Publisher : Institute for Research and Community Services

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25170/mitra.v8i1.4810

Abstract

The current precision farming system is the right step in an effort to increase production or yield from the farm, one of which is the importance of a control system for feeding and measuring water quality in catfish farming. The farmer group in Oetalus village, northern TTU district is a farmer Nababan, et al. PkM Sistem Monitoring Kolam Lele Berbasis Internet of Things (IoT) pada Kelompok Tani Tnoposeo 1 Desa Oetalus Copyright © 2024 Nababan, et al. Published by Institute for Research and Community Service, Atma Jaya Catholic University of Indonesia. This articles is licensed under a Creative Common Attribution-NonCommercial-Share Alike 4.0 International License. 76 group that cultivates catfish traditionally, with a traditional farming system, various problems arise such as poor water quality, the presence of dead catfish due to catfish that have a cannibal system so that the production of farmers is less than optimal. In overcoming these problems, the PkM team provides a solution by developing an aquuture system with the support of the Internet of Things (IoT) for feeding and measuring water quality. The PkM method is carried out by means of socialization and direct training for making automatic feed and monitoring water quality. The location of the PkM implementation is about 7 Km with a total of 20 farmer groups. The catfish feed control system is carried out with the support of smartphones and telegram applications. From the evaluation of this activity, in general, farmer groups feel helped with a satisfaction level of 90% but there are still various obstacles related to network conditions and understanding of farmer groups related to IoT so that consistent assistance is needed to support future precision agriculture / livestock systems.
PERBANDINGAN MODEL POPULASI MALTHUS DAN MODEL POPULASI VERHULST DALAM MENGESTIMASI JUMLAH PENDUDUK KABUPATEN NGADA Wae Misi, Maria Laurentina; Paulina Maure, Osniman; Grace Ludji, Dian
Asimtot : Jurnal Kependidikan Matematika Vol 5 No 01 (2023): Asimtot: Jurnal Kependidikan Matematika | Juni 2023 - November 2023
Publisher : Program Studi Pendidikan Matematika Universitas Katolik Widya Mandira

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30822/asimtot.v5i01.2823

Abstract

Dampak negatif dari tingginya tingkat pertumbuhan penduduk di suatu daerah adalah tidak meratanya fasilitas umum, diantaranya fasilitas kesehatan, gedung sekolah, jalan umum, dan fasilitas lainnya. Salah satu solusi untuk mengurangi dampak negatif dari tingginya pertumbuhan penduduk adalah melakukan estimasi menggunakan model populasi Malthus dan model populasi Verhulst. Oleh sebab itu, tujuan penelitian ini yaitu mengestimasi jumlah penduduk Kabupaten Ngada pada tahun 2025. Metode yang digunakan dalam penelitian ini adalah Studi Pustaka. Data penelitian ini adalah data jumlah penduduk Kabupaten Ngada tahun 2011-2020 yang diperoleh dari Badan Pusat Statistik Provinsi Nusa Tenggara Timur. Berdasarkan hasil penelitian diperoleh model Verhulst IV merupakan model terbaik untuk mengestimasi jumlah penduduk Kabupaten Ngada. Hasil perhitungan menggunakan model Verhulst IV menunjukan bahwa jumlah penduduk Kabupaten Ngada di tahun 2025 diperkirakan mencapai 180.288 jiwa.
Sistem pendukung keputusan pemilihan tanaman pangan berbasis web dengan Fuzzy Weighted Product Naisali, Aldegunda; Kelen, Yoseph Pius Kurniawan; Syarifuddin, Risald; Grace Ludji, Dian
Jurnal Simantec Vol 14, No 1 (2025): Jurnal Simantec Desember 2025 (Article in Progress)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/simantec.v14i1.29958

Abstract

The selection of food crops in North Central Timor Regency is based on individual experience and unstructured and unsystematic information. This process is subjective, depending on the experience or habits of farmers without the support of objective data analysis. This makes decision-making in determining the type of food crop less precise, and can hinder agricultural productivity. This study aims to build a web-based decision support system (DSS) that helps select the most appropriate food crops based on various criteria and alternatives. The system is developed using the Fuzzy Multi Attribute Decision Making (FMADM) and Weighted Product (WP) methods that handle uncertainty in evaluation and weighting. Fuzzy is used to accommodate linguistic qualitative data such as “sufficient”, “good”, or “very good”, reflecting real conditions in the field. Meanwhile, the Weighted Product method calculates the final score of each crop alternative based on the attribute value and weight of each criterion. The criteria in this system include planting area, harvested area, productivity, production, soil type, and market demand. This study aims to develop a web-based decision support system that provides recommendations for selecting the best food crops. This system is designed with an easy-to-use interface, and can be accessed online by farmers, extension workers, and policy makers. In this system, a fuzzy and weighted product approach is used to manage uncertainty in the assessment and produce objective crop rankings. The implementation results show that lowland rice plants get the highest score, which is 0.232977225 compared to other alternatives. This value indicates the highest level of feasibility of all the alternative crops analyzed, so lowland rice is the most recommended choice. This system is able to provide fast, data-based recommendations.Keywords: Fuzzy, Decision Support System, Food Crops, Weighted product, Web