Claim Missing Document
Check
Articles

Found 2 Documents
Search

Automated classification of brain tumor-based magnetic resonance imaging using deep learning approach Owida, Hamza Abu; AlMahadin, Ghayth; Al-Nabulsi, Jamal I.; Turab, Nidal; Abuowaida, Suhaila; Alshdaifat, Nawaf
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp3150-3158

Abstract

The treatment of brain tumors poses significant challenges and contributes to a significant number of deaths on a global scale. The process of identifying brain tumors in medical practice involves the visual analysis of photographs by healthcare experts, who manually delineate the tumor locations. However, this approach is characterized by its time-consuming nature and susceptibility to errors. In recent years, scholars have put forth automated approaches to early detection of brain tumors. However, these techniques face challenges attributed to their limited precision and significant false-positive rates. There is a need for an effective methodology to identify and classify tumors, which involves extracting reliable features and achieving precise disease classification. This work presents a novel model architecture that is derived from the EfficientNetB3. The suggested framework has been trained and assessed on a dataset consisting of 7,023 magnetic resonance images. The findings of this study indicate that the fused feature vector exhibits superior performance compared to the individual vectors. Furthermore, the technique that was provided showed superior performance compared to the currently available systems and attained a 100% accuracy rate. As a result, it is viable to employ this technique within a clinical environment for the purpose of categorizing brain tumors based on magnetic resonance images scans.
Automated detection of kidney masses lesions using a deep learning approach ALMahadin, Ghayth; Abu Owida, Hamza; Al Nabulsi, Jamal; Turab, Nidal; Al Hawamdeh, Nour
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i3.pp2862-2869

Abstract

Deep learning has emerged as a potent tool for various tasks, such as image classification. However, in the medical domain, there exists a scarcity of data, which poses a challenge in obtaining a well-balanced and high-quality dataset. Commonly seen issues in the realm of renal health include conditions such as kidney stones, cysts, and tumors. This study is centered on the examination of deep learning models for the purpose of classifying renal computed tomography (CT)-scan pictures. State-of-the-art classification models, such as convolutional neural network (CNN) approaches, are employed to boost model performance and improve accuracy. The algorithm is comprised of six convolutional layers that progressively increase in complexity. Every layer in the network utilizes a uniform 3x3 kernel size and applies the rectified linear unit (ReLU) activation function. This is followed by a max-pooling layer that downsamples the feature maps using a 2x2 pool size. Following this, a flatten layer was implemented in order to preprocess the data for the fully linked layers. The consistent utilization of uniform kernel sizes and activation functions throughout all layers of the model facilitated the smooth extraction of complex features, thereby enhancing the model’s ability to accurately identify different kidney conditions. As a result, we achieved a high accuracy rate of 99.8%, precision is 99.8%, and F1 score of approximately 99.7%.