Claim Missing Document
Check
Articles

Found 9 Documents
Search

Automated classification of brain tumor-based magnetic resonance imaging using deep learning approach Owida, Hamza Abu; AlMahadin, Ghayth; Al-Nabulsi, Jamal I.; Turab, Nidal; Abuowaida, Suhaila; Alshdaifat, Nawaf
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp3150-3158

Abstract

The treatment of brain tumors poses significant challenges and contributes to a significant number of deaths on a global scale. The process of identifying brain tumors in medical practice involves the visual analysis of photographs by healthcare experts, who manually delineate the tumor locations. However, this approach is characterized by its time-consuming nature and susceptibility to errors. In recent years, scholars have put forth automated approaches to early detection of brain tumors. However, these techniques face challenges attributed to their limited precision and significant false-positive rates. There is a need for an effective methodology to identify and classify tumors, which involves extracting reliable features and achieving precise disease classification. This work presents a novel model architecture that is derived from the EfficientNetB3. The suggested framework has been trained and assessed on a dataset consisting of 7,023 magnetic resonance images. The findings of this study indicate that the fused feature vector exhibits superior performance compared to the individual vectors. Furthermore, the technique that was provided showed superior performance compared to the currently available systems and attained a 100% accuracy rate. As a result, it is viable to employ this technique within a clinical environment for the purpose of categorizing brain tumors based on magnetic resonance images scans.
Bio-engineered strategies for osteochondral defect repair Alnaimat, Feras; Owida, Hamza Abu; Turab, Nidal M.; Al-Nabulsi, Jamal I.
Bulletin of Electrical Engineering and Informatics Vol 13, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i5.7316

Abstract

Due to the absence of blood vessels and nerves, the regenerative potential of articular cartilage is significantly constrained. This implies that the impact of a ruptured cartilage extends to the entire joint. Osteoarthritis, a health condition, may arise due to injury and the progressive breakdown of joint tissues. The progression of osteoarthritis can be accelerated by the extensive degradation of articular cartilage, which is ranked as the third most prevalent musculoskeletal disorder necessitating rehabilitation, following low back pain and fractures. The existing therapeutic interventions for cartilage repair exhibit limited efficacy and seldom achieve complete restoration of both functional capacity and tissue homeostasis. Emerging technological advancements in the field of tissue engineering hold significant promise for the development of viable substitutes for cartilage tissue, capable of exhibiting functional properties. The overarching strategy involves ensuring that the cell source is enriched with bioactive molecules that facilitate cellular differentiation and/or maturation. This review provides a comprehensive summary of recent advancements in the field of cartilage tissue engineering. Additionally, it offers an overview of recent clinical trials that have been conducted to examine the latest research developments and clinical applications pertaining to weakened articular cartilage and osteoarthritis.
Applications of nanostructured materials for severe acute respiratory syndrome-CoV-2 diagnostic Turab, Nidal M.; Abu Owida, Hamza; Al-Nabulsi, Jamal I.; Alnaimat, Feras
Bulletin of Electrical Engineering and Informatics Vol 13, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i4.7325

Abstract

There is a growing concern that severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) infections will continue to rise, and there is now no safe and effective vaccination available to prevent a pandemic. This has increased the need for rapid, sensitive, and highly selective diagnostic techniques for coronavirus disease (COVID-19) detection to levels never seen before. Researchers are now looking at other biosensing techniques that may be able to detect the COVID-19 infection and stop its spread. According to high sensitivity, and selectivity that could provide real-time results at a reasonable cost, nanomaterial show great promise for quick coronavirus detection. In order to better comprehend the rapid course of the infection and administer more effective treatments, these diagnostic methods can be used for widespread COVID-19 identification. This article summarises the current state of research into nanomaterial-based biosensors for quick SARS‑CoV‑2 diagnosis as well as the prospects for future advancement in this field. This research will be very useful during the COVID-19 epidemic in terms of establishing rules for designing nanostructure materials to deal with the outbreak. In order to predict the spread of the SARS-CoV-2 virus, we investigate the advantages of using nano-structure material and its biosensing applications.
Application of smart hydrogels scaffolds for bone tissue engineering Owida, Hamza Abu; Alnaimat, Feras; Al-Nabulsi, Jamal I.; Al-Ayyad, Muhammad; Turab, Nidal M.
Bulletin of Electrical Engineering and Informatics Vol 13, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i6.7608

Abstract

Recent attention in the biomedical and orthopedic sectors has been drawn towards bone defects, emerging as a prominent focus within orthopedic clinics. Hydrogels, due to their biocompatibility, elevated water content, softness, and flexibility, are increasingly acknowledged in tissue regeneration research. Advanced biomaterials offer numerous advantages over traditional materials, notably the capacity to respond to diverse physical, chemical, and biological stimuli. Their responsiveness to environmental cues, such as three-dimensional (3D) morphology and phase conditions, holds promise for enhancing the efficacy of localized bone lesion repairs. This paper aims to revolutionize the treatment of severe bone abnormalities by providing a comprehensive examination of hydrogels capable of morphological adaptation to environmental changes. It delineates their classification, manufacturing principles, and current research status within the field of bone defect regeneration.
Progress in self-powered medical devices for breathing recording Abu Owida, Hamza; Turab, Nidal; Al-Nabulsi, Jamal I.; Al-Ayyad, Muhammad
Bulletin of Electrical Engineering and Informatics Vol 13, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i5.5253

Abstract

Wearable and implantable medical technologies are increasingly being used for the diagnosis, treatment, and prevention of illnesses and other health concerns. One's respiration can be monitored using any number of different biosensors and tracking devices. Self-powered sensors, for example, have a reduced total cost, are easy to prepare, have a high degree of design-ability, and are available in a number of different forms when compared to other types of sensors. The mechanical energy stored in the respiratory system could be converted into electrical energy by using airflow to operate self-powered sensors. Self-recharging sensors and systems are now in development to make home health monitoring and diagnosis more practical. There has not been a lot of study devoted to the models of respiratory sickness or the output signals that connect with them. Thus, investigating the character of their bond is not only difficult but also crucial. This article examined the theory behind self-powered breathing sensors and systems, as well as their output characteristics, detection indices, and other cutting-edge developments. To help communicate knowledge to other academics working in this field and interested in this topic, we also explored the challenges and potential benefits of autonomous sensors.
Perspective on the applications of terahertz imaging in skin cancer diagnosis Owida, Hamza Abu; Al-Nabulsi, Jamal I.; Al-Ayyad, Muhammad; Turab, Nidal; Alshdaifat, Nawaf
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i1.pp1242-1250

Abstract

Applications of terahertz (THz) imaging technologies have advanced significantly in the disciplines of biology, medical diagnostics, and non- destructive testing in the past several decades. Significant progress has been made in THz biomedical imaging, allowing for the label-free diagnosis of malignant tumors. Terahertz frequencies, which lie between those of the microwave and infrared, are highly sensitive to water concentration and are significantly muted by water. Terahertz radiation does not cause ionization of biological tissues because of its low photon energy. Recently, terahertz spectra, including spectroscopic investigations of cancer, have been reported at an increasing rate due to the growing interest in their biological applications sparked by these unique features. To improve cancer diagnosis with terahertz imaging, an appropriate differentiation technique is required to increased blood supply and localized rise in tissue water content that commonly accompany the presence of malignancy. Terahertz imaging has been found to benefit from structural alterations in afflicted tissues. This study provides an overview of terahertz technology and briefly discusses the use of terahertz imaging techniques in the detection of skin cancer. Research into the promise and perils of terahertz imaging will also be discussed.
Narrative review of the literature: application of mechanical self powered sensors for continuous surveillance of heart functions Owida, Hamza Abu; Al-Nabulsi, Jamal I.; Turab, Nidal; Al-Ayyad, Muhammad; Al Hawamdeh, Nour; Alshdaifat, Nawaf
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i1.pp243-251

Abstract

Cardiovascular disease consistently occupies a prominent position among the leading global causes of mortality. Continuous and real-time monitoring of cardiovascular signs over an extended duration is necessary to identify irregularities and prompt timely intervention. Due to this reason, researchers have invested heavily in developing adaptive sensors that may be worn or implanted and continuously monitor numerous vital physiological characteristics. Mechanical sensors represent a category of devices capable of precisely capturing the temporal variations in pressure within the heart and arteries. Mechanical sensors possess inherent advantages such as exceptional precision and a wide range of adaptability. This article examines four distinct mechanical sensor technologies that rely on capacitive, piezoresistive, piezoelectric, and triboelectric principles. These technologies show great potential as novel approaches for monitoring the cardiovascular system. The subsequent section provides a comprehensive analysis of the biomechanical components of the cardiovascular system, accompanied by an in-depth examination of the methods employed to monitor these intricate systems. These systems measure blood and endocardial pressure, pulse wave, and heart rhythm. Finally, we discuss the potential benefits of continuing health monitoring in vascular disease treatment and the challenges of integrating it into clinical settings.
Harnessing the power of blockchain to strengthen cybersecurity measures: a review Turab, Nidal; Owida, Hamza Abu; Al-Nabulsi, Jamal I.
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 1: July 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i1.pp593-600

Abstract

As the digital environment continues to evolve with the increasing frequency and complexity of cybersecurity threats, there is growing interest in using blockchain (BC) technology. BC is a technology with desirable properties such as decentralization, integrity, and transparency. The decentralized nature of BC eliminates single points of failure, reducing the vulnerability of critical systems to targeted attacks. The complex and rapidly evolving nature of cyber threats requires an earlier and adaptive approach. This review paper examined several papers collected from official websites. Focusing on using BC technology to improve cybersecurity, the main keywords of the review paper were BC technology, supply chain management, proof of work, and proof of stake. This review paper aims to investigate the security components through a threat assessment that compares the security of BC in different classes and real attack environments. It highlights the potential of BC to strengthen cybersecurity measures, citing unique features. The review paper also points out that there is a lack of focus on addressing security challenges related to computer data and digital systems and calling for a deeper discussion on problem-solving.
Advances in medical power electronics: applications and challenges Owida, Hamza Abu; Al-Nabulsi, Jamal I.; Turab, Nidal; Al-Ayyad, Muhammad
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i3.pp1983-1990

Abstract

Power electronics plays a crucial role in modern medical applications by providing efficient power management, conversion, and regulation across a wide range of devices. In high-power systems, such as medical imaging equipment, power electronics ensure precise control, stable operation, and optimal performance, which are essential for accurate diagnostic imaging. On the other hand, in low-power devices such as wearable health monitors and implantable medical devices, power electronics focus on enhancing energy efficiency and miniaturization. This is vital for extending battery life, reducing the need for frequent recharging or replacement, and improving patient comfort and mobility. This review examines the role of power electronics in diverse medical applications, highlighting its importance in enabling stable performance in critical life-support systems, therapeutic devices, and portable health monitors. Key technologies and power management integrated circuits are explored for their contribution to improving the efficiency, reliability, and longevity of medical devices. The review also addresses significant challenges, including miniaturization, energy efficiency, and regulatory compliance. Future trends such as the development of advanced semiconductor materials, innovations in energy harvesting techniques, and wireless power transfer technologies are also discussed. These advancements are expected to revolutionize the field, driving the next generation of medical devices and shaping the future of healthcare technology.