Claim Missing Document
Check
Articles

Found 3 Documents
Search

Automated detection of kidney masses lesions using a deep learning approach ALMahadin, Ghayth; Abu Owida, Hamza; Al Nabulsi, Jamal; Turab, Nidal; Al Hawamdeh, Nour
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i3.pp2862-2869

Abstract

Deep learning has emerged as a potent tool for various tasks, such as image classification. However, in the medical domain, there exists a scarcity of data, which poses a challenge in obtaining a well-balanced and high-quality dataset. Commonly seen issues in the realm of renal health include conditions such as kidney stones, cysts, and tumors. This study is centered on the examination of deep learning models for the purpose of classifying renal computed tomography (CT)-scan pictures. State-of-the-art classification models, such as convolutional neural network (CNN) approaches, are employed to boost model performance and improve accuracy. The algorithm is comprised of six convolutional layers that progressively increase in complexity. Every layer in the network utilizes a uniform 3x3 kernel size and applies the rectified linear unit (ReLU) activation function. This is followed by a max-pooling layer that downsamples the feature maps using a 2x2 pool size. Following this, a flatten layer was implemented in order to preprocess the data for the fully linked layers. The consistent utilization of uniform kernel sizes and activation functions throughout all layers of the model facilitated the smooth extraction of complex features, thereby enhancing the model’s ability to accurately identify different kidney conditions. As a result, we achieved a high accuracy rate of 99.8%, precision is 99.8%, and F1 score of approximately 99.7%.
Narrative review of the literature: application of mechanical self powered sensors for continuous surveillance of heart functions Owida, Hamza Abu; Al-Nabulsi, Jamal I.; Turab, Nidal; Al-Ayyad, Muhammad; Al Hawamdeh, Nour; Alshdaifat, Nawaf
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i1.pp243-251

Abstract

Cardiovascular disease consistently occupies a prominent position among the leading global causes of mortality. Continuous and real-time monitoring of cardiovascular signs over an extended duration is necessary to identify irregularities and prompt timely intervention. Due to this reason, researchers have invested heavily in developing adaptive sensors that may be worn or implanted and continuously monitor numerous vital physiological characteristics. Mechanical sensors represent a category of devices capable of precisely capturing the temporal variations in pressure within the heart and arteries. Mechanical sensors possess inherent advantages such as exceptional precision and a wide range of adaptability. This article examines four distinct mechanical sensor technologies that rely on capacitive, piezoresistive, piezoelectric, and triboelectric principles. These technologies show great potential as novel approaches for monitoring the cardiovascular system. The subsequent section provides a comprehensive analysis of the biomechanical components of the cardiovascular system, accompanied by an in-depth examination of the methods employed to monitor these intricate systems. These systems measure blood and endocardial pressure, pulse wave, and heart rhythm. Finally, we discuss the potential benefits of continuing health monitoring in vascular disease treatment and the challenges of integrating it into clinical settings.
Advancement in self-powered implantable medical systems Abu Owida, Hamza; Al-Nabulsi, Jamal; Turab, Nidal; Al-Ayyad, Muhammad; Al Hawamdeh, Nour; Alshdaifat, Nawaf
Bulletin of Electrical Engineering and Informatics Vol 14, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i1.5881

Abstract

Many different elements of patient monitoring and treatment can be supported by implantable devices, which have proven to be extremely reliable and efficient in the medical profession. Medical professionals can use the data they collect to better diagnose and treat patients as a result. The devices’ power sources, on the other hand, are battery-based, which introduces a slew of issues. As part of this review, we explore the use of harvesters in implanted devices and evaluate various materials and procedures and look at how new and improved circuits can enable the harvesters to sustain medical devices.