Claim Missing Document
Check
Articles

Found 2 Documents
Search

Carbon-coated nickel foam for hypochlorous acid sensor Sanjaya, Afiten Rahmin; Riyanto, Hanzhola Gusman; Rahmawati, Isnaini; Putri, Yulia Mariana Tesa Ayudia; Nurhalimah, Dede; Saepudin, Endang; Tesla, Yudistira; Krisnandi, Yuni Krisyuningsih
Environmental and Materials Vol. 1 No. 1: (June) 2023
Publisher : Institute for Advanced Science, Social, and Sustainable Future

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61511/eam.v1i1.2023.105

Abstract

The electrochemical detection method of hypochlorous acid (HOCl) using carbon foam electrodes have been successfully developed. The carbon foam was prepared from carbon-coated nickel foam which is synthesized using a hydrothermal-carbonization method. SEM characterization indicated that the optimum synthesis of carbon-coated nickel foam has been achieved on the 4th layer coating process with an expected spherical structure, while characterization using FTIR and Raman spectroscopy confirmed the formation of graphitic material with D band and G band characteristics. An electroactive surface area of ​​0.0236 cm2 was achieved. Cyclic voltammetry of HOCl in 0.1 M phosphate buffer solution pH 6.0 showed the best current response for HOCl reduction occurs at a potential of -0.3 V (vs. Ag/AgCl). Further detection of HOCl using amperometry technique in the concentration range of 2-200 μg/mL showed good linearity with sensitivity of 9.112 mA/µg/L and an estimated detection limit of 1.96 µg/mL. Good repetition is indicated by the RSD value of 2.499 % (n=5). This developed sensor also showed good selectivity in the presence of interference compounds, such as FeCl2 and CuSO4. Besides, the determination of HOCl in tap water has been successfully conducted and generated a comparable result with the UV-VIS method (3.30 µg/mL hypochlorite). The results indicated that the developed sensor is promising for the detection of HOCl in environmental applications.
Electroreduction of carbon dioxide (CO2) with flow cell system using tin-modified copper foam electrode Syauqi, Muhammad Iqbal; Cahyani, Annisa Titi; Putri, Yulia Mariana Tesa Ayudia; Jiwanti, Prastika Krisma
Environmental and Materials Vol. 1 No. 2: (December) 2023
Publisher : Institute for Advanced Science, Social, and Sustainable Future

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61511/eam.v1i2.2023.363

Abstract

In this study, modification of the copper foam (Cuf) electrode with tin (Sn) was carried out with the electrodeposition method for application in CO2 electroreduction.  Characterization using SEM EDX, FTIR, and XRD confirmed the presence of Cu2O, CuO, and SnO2 thin layer mixture on the Cuf/Sn electrode. The electrochemical characteristics of the electrode were examined by using the cyclic voltammetry (CV) technique. Under optimized conditions, electrochemical reduction of CO2 in a flow cell system. At the optimum condition of CO2 reduction in a flow cell system (flow rate of 75 mL/min and –0.6 V vs Ag/AgCl applied potential), the Cuf/Sn electrode exhibited a remarkable 75.79% with an 8.84 µmol/h formic acid production rate. In a comparable experiment, the Cuf/Sn flow system revealed a twofold improvement in the faradaic efficiency compared to the batch system and a threefold increase compared to the unmodified Cuf electrode in the flow system. Stability tests demonstrated consistent performance up to the 4th cycle, followed by a decline in the 5th cycle, potentially indicative of surface deterioration. The elevated performance is attributed to the synergistic effect of the Cu-Sn oxide layer, reinforcing the catalyst’s potential for efficient electrochemical CO2 reduction to formic acid.