Claim Missing Document
Check
Articles

Found 2 Documents
Search

Penerapan Model CRISP-DM pada Analisis Pendapatan Menggunakan Metode Klasifikasi Savitri, Tjok Istri Vicky; Wibowo, Wilbert Bryan; Wiradinata, Trianggoro
Prosiding Seminar Nasional Universitas Ma Chung (Informatika & Sistem Informasi Bahasa dan Seni
Publisher : Ma Chung Press

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Di era globalisasi ini, prediksi klasifikasi pendapatan dibutuhkan untuk membantu pemerintah dalam mengalokasikan sumber daya untuk berbagai layanan publik, pembangunan infrastruktur, kesehatan, pendidikan, dan program sosial lainnya. Dengan memahami pola pendapatan dan kebutuhan masyarakat, pemerintah dapat merencanakan dan mendistribusikan anggaran secara lebih efektif dan efisien, serta memastikan bahwa layanan dan program yang disediakan tepat sasaran dan memberikan manfaat maksimal bagi masyarakat. Data Census Income mencakup berbagai atribut demografis dan ekonomi, termasuk usia, jenis kelamin, pendidikan, status pernikahan, pekerjaan, ras, jam kerja per minggu, dan asal negara. Penelitian ini menggunakan teknik machine learning untuk mengklasifikasikan individu berdasarkan tingkat pendapatan mereka, apakah di atas atau di bawah $50.000 per tahun. Metode klasifikasi yang digunakan meliputi Logistic Regression, K-Nearest Neighbors (KNN), dan Naive Bayes. Penelitian ini menggunakan sebanyak 30.162 data dengan pembagian 80% sebagai data latih dan 20% sebagai data tes. Hasil penelitian menunjukkan akurasi untuk Logistic Regression sebesar 81%, KNN sebesar 79%, dan Naive Bayes sebesar 77%. Hasil penelitian juga menunjukkan bahwa faktor-faktor seperti tingkat pendidikan, jam kerja per minggu, dan jenis pekerjaan memiliki pengaruh signifikan terhadap pendapatan individu. Temuan ini dapat membantu pemerintah dan pembuat kebijakan dalam merumuskan strategi untuk mengurangi kesenjangan pendapatan dan meningkatkan kesejahteraan ekonomi masyarakat. Dapat disimpulkan bahwa penggunaan Logistic Regression terbukti paling akurat dalam memprediksi pendapatan.
Enhancing Online Batik Shopping Experience through Live Streaming Commerce and the LYFY Application Wiradinata, Trianggoro; Wibowo, Wilbert Bryan; Oktian, Yustus Eko; Maryati, Indra; Soekamto, Yosua Setyawan
Journal of Applied Data Sciences Vol 6, No 1: JANUARY 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i1.504

Abstract

Online batik shopping often results in buyer dissatisfaction due to discrepancies between product descriptions and the actual items received. Static images and text on e-marketplace platforms are insufficient to convey the intricate details of batik designs, leading to mismatches in customer expectations. To mitigate this issue, Live Streaming Commerce (LSC) features, such as those on Shopee Live, allow sellers to showcase products in real-time, providing more accurate representations. However, sellers face challenges in managing overwhelming volume of comments during live streams, making it difficult to prioritize important queries. LYFY, a comment management app developed to streamline these interactions, aims to address this problem by improving the quality of interaction between live streamers and prospective buyers through filtering important comments. This study examines the determinants affecting the adoption of LYFY by online batik vendors. The research integrates the Task-Technology Fit (TTF), Technology Acceptance Model (TAM), and Expectation-Confirmation Model (ECM) frameworks to evaluate LYFY's performance in fulfilling user requirements. Data were collected from 243 respondents with LSC experience, and the research model underwent evaluation through Partial Least Squares Structural Equation Modeling (PLS-SEM). The measurement model exhibited high reliability and validity, with values surpassing the suggested thresholds, thereby providing solid support for subsequent analysis. Key factors such as TTF, confirmation, perceived usefulness, ease of use, and satisfaction were examined to determine their impact on user adoption. The analysis revealed that TTF has the strongest influence on confirmation, perceived usefulness, satisfaction, and individual performance. Additionally, perceived ease of use and confirmation substantially influence continuance intentions and satisfaction. These results suggest that enhancing LYFY's task-technology fit and simplifying its user interface are crucial for improving user satisfaction and adoption. By addressing these areas, LYFY can better support live stream sellers, reduce product expectation discrepancies, and improve overall customer experience, particularly in the online batik market.