Claim Missing Document
Check
Articles

Found 18 Documents
Search

Compact Design of 1x2 MIMO Microstrip Patch Antenna with Corners Trimmed for Vehicle-to-Vehicle Communication Zaw, Ko Ko; Khin, Ei Ei; Oo, Thandar; Hla Myo Tun; Pradhan, Devasis
Journal of Novel Engineering Science and Technology Vol. 4 No. 01 (2025): Journal of Novel Engineering Science and Technology
Publisher : The Indonesian Institute of Science and Technology Research

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56741/jnest.v4i01.694

Abstract

This paper mainly focuses on the compact design of circularly polarized microstrip patch antenna for vehicle-to-vehicle communication. The charging time of electric vehicle is longer waiting time than compared to traditional gasoline-based vehicles. The charging is done at the public charging stations. When the vehicles need charging while driving, they communicate with Dedicated Short Range Communications (DSRC) band to send the information to the nearest vehicles and receive information from the charging station. Moreover, the DSRC band is used in many application areas such as Intelligent Transportation System (ITS), Electronic Toll Collection (ETC), Collision Avoidance, and connected vehicles. The vehicle-to-vehicle communication system needs to achieve higher data rates multimedia. These requirements cannot be supported by using single microstrip patch antenna. However, some research challenges have been in MIMO antenna such as antenna miniaturization, decoupling, and isolation between the antennas. The research solution for the problem statement in this study is emphasized on the corner trimmed is added in the rectangular patch and ground plane to make the current part longer and the impedance matching better, and to get low ECC. After that, the mutual coupling can be reduced by adding suitable separation between two radiating patches. S12 and S21 are less than -20dB from 5.81 GHz to 5.930 GHz. So, the proposed antenna design is very appropriate for car-to-car (5.85-5.925 GHZ) communication. The measurement result of the proposed antenna is valid because the desired values such as minimum S11 ≤ -10 dB, VSWR ≤ 2, and ECC < 0.3 are obtained for V2V communication in both simulation and measurement results.
Analysis of High-Performance Step-Down DC to DC Converter Design Based on Zero Voltage Switching with Pulse Width Modulation Technique for Electric Vehicles Nyo, Hnin Wint War; Tun, Hla Myo; Win, Lei Lei Yin; Win, Thanda; Khin, Ei Ei; Aye, Mya Mya; Pradhan, Devasis
Journal of Novel Engineering Science and Technology Vol. 4 No. 01 (2025): Journal of Novel Engineering Science and Technology
Publisher : The Indonesian Institute of Science and Technology Research

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56741/jnest.v4i01.775

Abstract

The paper mainly focuses on analyzing high-performance step-down DC to DC converter based on zero voltage switching with pulse width modulation technique for electric vehicles. In this paper, PI, fuzzy PI, and adaptive network-based fuzzy inference system (ANFIS)control methods are applied to the phase shift full-bridge (PSFB) zero voltage switching (ZVS) converter for auxiliary components in electric vehicles. The robust analysis of three control methods is compared by using the AC small-signal mathematical model. Traditional PI control uses specific mathematical equations with errors and derivatives. Fuzzy PI control utilizes fuzzy logic rules with linguistic variables such as high, medium, and low. ANFIS combines fuzzy logic and neural networks to capture both benefits. The three control designs' switching losses and load changes are analyzed and implemented with the MATLAB/SIMULINK Software platform. From the simulation results, traditional PI control works with 92% efficiency. Fuzzy PI control and ANFIS work with 93% efficiency at full load capacity.
Design of Multi-Level Inverter Design for Charging Stations of Electric Vehicles Htay, Aung Kyaw; Tun, Hla Myo Tun; Pradhan, Devasis; Win, Lei Lei Yin; Khin, Ei Ei; Soe, Khaing Thandar
Andalasian International Journal of Applied Science, Engineering and Technology Vol. 4 No. 2 (2024): July, 2024
Publisher : LPPM Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/aijaset.v4i2.136

Abstract

The paper mainly focuses on the Design of Multi-Level Inverter Design for Charging Stations of Electric Vehicles. The research challenges in this study are: the lack of technology for higher level design of multilevel inverter systems for electric vehicles (EVs) is facing to solve the high performance and robustness of the system in reality, the control algorithm for maximum power observing is a crucial challenge in the designing and implementing such kind of multilevel inverter design, the pure sine wave inverter approaches with higher number steps could be a candidate for electric vehicles (EVs) in real world applications. That problems could be solved based on the knowledge and idea of power electronic circuits and systems. The implementation of this study was accomplished based on the specific model especially based on the circuit theory and microelectronic devices. The results confirm that the performance specification of targeted multilevel inverter (MLI) in real world applications.
Analysis on Wideband Channel Model for High Speed Wireless Communication Systems Mon, Myint Myint; Tun, Hla Myo; Win, Lei Lei Yin; Win, Thanda; Aye, Mya Mya; Soe, Khaing Thandar; Pradhan, Devasis
Journal of Novel Engineering Science and Technology Vol. 4 No. 01 (2025): Journal of Novel Engineering Science and Technology
Publisher : The Indonesian Institute of Science and Technology Research

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56741/jnest.v4i01.803

Abstract

The paper emphasizes on the analysis on wideband channel model for high speed wireless communication systems. The research problem in this study are based on the following concepts such as (i) Firstly, it is necessary to change to the appropriate physical devices that can support 5G system, (ii) It is required to design a channel that will adapt to the medium that will be convenient for the changed physical devices, and (iii) Mobile terminals that currently use 4G cannot be used in 5G system. The objectives in this study are - to analyze the existing channel model for mobile communication, to analyze the mathematical and dynamical model for wireless propagation channel, to implement the wireless propagation channel with specific purposes, to implement the optimized channel model performance, and to evaluate the performance of the developed channel design. The numerical analyses in this study are conducted by using MATLAB language. The research direction in this study are based on the channel system functions, and tapped delay-line models. The simulation results are confirmed that the 12 taps in this study for the high speed wireless communication system design.
Physical Characteristics Analysis on Intelligent Reflecting Surface for High Speed Telecommunication Networks Su Win, Naw Aye Myat Su; Tun, Hla Myo; Win, Lei Lei Yin; Win, Thanda; Aye, Mya Mya; Win, Khin Kyu Kyu; Soe, Khaing Thandar; Pradhan, Devasis
Journal of Novel Engineering Science and Technology Vol. 4 No. 02 (2025): Journal of Novel Engineering Science and Technology
Publisher : The Indonesian Institute of Science and Technology Research

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56741/jnest.v4i02.804

Abstract

The paper mainly focuses on the physical characteristics analysis of an intelligent reflecting surface for high-speed telecommunication networks. The research problem in this study are (i) To overcome the bottleneck, a novel transmission scheme, named hybrid reflection modulation (HRM) must be considered, exploiting both active and passive reflecting elements at the RIS and their combinations, which enables to convey information without using any radio frequency (RF) chains, (ii) In the HRM scheme, the active reflecting elements using additional power amplifiers can be able to amplify and reflect the incoming signal, while the remaining passive elements can reflect the signals with appropriate phase shifts, (iii) Based on this novel transmission model, we will observe an upper bound for the average bit error probability (ABEP), and derive achievable rate of the system using an information theoretic approach, and (iv) Moreover, comprehensive computer simulations could be performed to prove the superiority of the proposed HRM scheme over existing fully passive, fully active and reflection modulation (RM) systems. The research directions are as follows: (i) Implementing the Intelligent Reflecting Surfaces (IRS) and Hybrid Reflection Modulation Technologies for 6G Wireless Communication, (ii) Implementing the Intelligent Reflecting Surfaces (IRS) and Hybrid Reflection Modulation Technologies with physical layer security techniques, and (iii) Modelling the mathematical equation for optimization design of IRS system. There are two portions in this study. The first is designing the signal model in the IRS surface with specific physical parameters. The second one is an analysis of the capacity of point-to-point MIMO channels.  The analyses are conducted using by MATLAB language. The results confirm the performance specification of the IRS system for high-speed telecommunication applications.
Channel Coding Analysis for High-Speed Telecommunication System Saw, Khin; Yin Win, Lei Lei; Myo Tun, Hla; Win, Thanda; Aye, Mya Mya; Kyu Kyu Win, Khin; Pradhan, Devasis
Journal of Novel Engineering Science and Technology Vol. 4 No. 03 (2025): Forthcoming Issue - Journal of Novel Engineering Science and Technology
Publisher : The Indonesian Institute of Science and Technology Research

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56741/jnest.v4i03.820

Abstract

The paper mainly focuses on the channel coding design for high-speed telecommunication systems. The challenging issues in this study are based on (1) the growing demand for high data speed and an increase in subscribers, and (2) high-speed telecommunication networks allow users to avoid them due to better speed and more bandwidth. The objectives of this study are (1) to obtain a higher data rate, higher spectral efficiency, higher throughput, higher bandwidth, and higher energy efficiency at lower latency and (2) to detect/correct errors caused when information is transmitted through noisy channels. Therefore, high-speed telecommunication channel coding techniques will play a major role in achieving fast communication with minimum errors. The linear block and turbo codes are fundamental to analyzing the channel coding scheme for specific purposes. Theoretical concepts with numerical simulation are used to conduct the analyses. The simulation results on BER analyses confirm that the performance criteria could be met with real-world applications.
Design, fabrication and measurement of metal-semiconductor field effect transistor based on zinc oxide material Tun, Hla Myo; Wulansari, Rizky Ema; Pradhan, Devasis; Naing, Zaw Min
Journal of Engineering Researcher and Lecturer Vol. 2 No. 3 (2023): Regular Issue
Publisher : Researcher and Lecturer Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58712/jerel.v2i3.103

Abstract

The paper mainly focuses on the design, fabrication and measurement on Zinc Oxide (ZnO)-based Metal-Semiconductor Field Effect Transistor. The research problem in this study is difficulty on observing the electronic properties of ZnO materials to fabricate the high performance transistor design with non-toxic semiconductor materials. Even though the wide band gap materials of Group III and V possess high performance properties for fabricating the power electronics devices, the harmful impacts could not be reduced. The research solution for the problem statement in this study is emphasized on the non-toxic materials of Group II and VI-based high performance power electronics devices fabrication. The experimental studies of the device fabrication were conducted by Pulse Laser Deposition (PLD) process in standard laboratory. The step-by-step procedures for MSFET device fabrication were discussed and the confirmation of developed device fabrication was completed. The approaches on all measurement were completed based on band diagram condition, quantum interference on metal-semiconductor materials, and current-voltage characteristics. The step by step measurement for fabricated device for the proposed structure could be confirmed by standard measurement techniques. The proposed design has been validated for the utilization of high performance applications. The physical properties and physical characteristics for measurement results were confirmed by the theoretical analyses. The numerical analyses have been completed with the help of MATLAB. All results have been proved by recent research works.
Compact design of circularly polarized microstrip patch antenna with double slip ring resonator for vehicle-to-vehicle communication Zaw, Ko Ko; Khin, Ei Ei; Oo, Thandar; Pradhan, Devasis; Tun, Hla Myo
Journal of Engineering Researcher and Lecturer Vol. 3 No. 1 (2024): Regular Issue
Publisher : Researcher and Lecturer Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58712/jerel.v3i1.122

Abstract

The paper mainly focuses on the compact design of circularly polarized microstrip patch antenna for vehicle-to-vehicle communication. The charging time of electric vehicle is longer waiting time than compared to traditional gasoline-based vehicles. The charging is done at the public charging stations. When the vehicles need charging while driving, they communicate with Dedicated Short Range Communications (DSRC) band to send the information to the nearest vehicles and receive information from the charging station. Moreover, DSRC band is used in many applications area such as Intelligent Transportation System (ITS), Electronic Toll Collection (ETC), Collision Avoidance, and connected vehicles. The research problem in this study is that when installing an antenna on a vehicle, it is important to have a compact size and achieve circular polarization. The research solution for the problem statement in this study is emphasized on 45? inclined slot and corner trimmed is added in rectangular patch to make the current part longer and the impedance matching better, and to get circular polarization. After that, Swiss roll structure CSRR is added in ground plane to improve bandwidth. Finally, outer SRR is added in the ground plane to improve S11. The proposed design has been validated for car-to-car (5.85-5.925 GHZ) communication.