Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Soft Computing Exploration

Sentiment based-emotion classification using bidirectional long short term-memory (Bi-LSTM) Utami, Putri; Ningsih, Maylinna Rahayu; Pertiwi, Dwika Ananda Agustina; Unjung, Jumanto
Journal of Soft Computing Exploration Vol. 5 No. 3 (2024): September 2024
Publisher : SHM Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joscex.v5i3.461

Abstract

Social media is now an important platform for sharing information, expressing opinions, and daily feelings or emotions. The expression of emotions such as anger, sadness, fear, happiness, disappointment, and so on social networks can be further analyzed either for business purposes or just analyzing the habits of a community or someone's posts.  However, analyzing manually will be a time-consuming process, and the use of conventional methods can affect the results of less accurate accuracy. This research aims to improve the accuracy of recognizing emotions in text by using the Bidirectional Long Short Term Memory (Bi-LSTM) method, which is a subset of RNNs that tend to be more stable during training and show better performance on various NLP and other processing tasks. The method used includes several stages, namely preprocessing, tokenization, sequence padding, and modeling. The results of this study show that the Bi-LSTM model is capable of predicting emotions in text with an accuracy of 94.45% because it excels in handling the temporal context and can avoid vanishing gradients.
Global recession sentiment analysis utilizing VADER and ensemble learning method with word embedding Ningsih, Maylinna Rahayu; Wibowo, Kevyn Aalifian Hernanda; Dullah, Ahmad Ubai; Jumanto, Jumanto
Journal of Soft Computing Exploration Vol. 4 No. 3 (2023): September 2023
Publisher : SHM Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joscex.v4i3.193

Abstract

The issue of the Global Recession is hitting various countries, including Indonesia. Many Indonesians have expressed their opinions on the issue of the global recession in 2023, one of which is from Twitter. By understanding public sentiment, we can assess the impact felt by the public on the issue itself. Sentiment analysis in this research is a form of support to evaluate Indonesia's sustainability in dealing with the issue of Global Recession in accordance with the Sustainable Development Goals (SDGs). However, in previous research, it is still rare to find a model that has good performance in conducting Global Recession Sentiment Analysis. Therefore, the purpose of this research is to propose a machine learning model that is expected to provide good performance in sentiment analysis. The existing sentiment dataset is labeled with the Valence Aware Dictionary for Social Reasoning (VADER) algorithm, then an Ensemble Learning method is designed which is composed of Logistic Regression, Decision Tree, Random Forest, and Support Vector Machine (SVM) algorithms. After that, the Countvectorizer feature extraction with N-Gram, Best Match 25 (BM25), and Word Embedding is carried out to convert sentences in the dataset into numerical vectors so as to improve model performance. The research results provide a more optimal accuracy performance of 95.02% in classifying sentiment. So that the proposed model successfully performs sentiment analysis better than previous research.