Claim Missing Document
Check
Articles

Found 7 Documents
Search

COMPARISON OF SPHERICAL TRIGONOMETRY METHOD, JEAN MEEUS ALGORITHM AND GOOGLE QIBLA FINDER IN DETERMINING OF THE QIBLA DIRECTION OF ISLAMIC HOSPITAL Sari, Firda Yunita; Yusuf Ababil, Achmad Fachril; Nafis, Urwatun; Ardelia, Nita; Khasanah, Rofina Muti'atun; Ulinnuha, Nurissaidah; Hamid, Abdulloh
Al-Hilal: Journal of Islamic Astronomy Vol 5, No 2, 2023
Publisher : Fakultas Syari'ah dan Hukum UIN Walisongo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21580/al-hilal.2023.5.2.17192

Abstract

Accuracy in facing the Qibla is an essential part of performing prayers. This vital value is evident when many mosques are built in public places. This article is qualitative with field data sources, namely coordinate points at the Jemursari Islamic Hospital mosque, Surabaya Islamic Hospital, and Al-Irsyad Hospital Surabaya. Once collected, the data was analyzed using three methods for calculating Qibla direction, namely Spherical Trigonometry, Jean Meeus, and Google Qibla Finder. This article found that the three methods obtained the same results at the Jemursari Islamic Hospital at 294°3'5", at the Surabaya Islamic Hospital at 294° 3'6", and at the Al-Irsyad Surabaya Hospital at 294°3'5 ". However, there is a difference between calculations and field measurements of 2°–7°, including within the Qibla deviation tolerance. It can be concluded that these three methods can accurately determine the Qibla direction in various locations. However, re-checking is required if the measurements exceed the tolerance limits.
EFEKTIVITAS EDUKASI DAN PENDAMPINGAN POLA ASUH DALAM MENGATASI STUNTING DI DESA GADING WINONGAN Sari, Firda Yunita; Jayanti, Aprilia Dwi; Rahmawati, Alda; Almira, Shinta; Muhammad Naufal Badar; Kumalasari, Mei Lina Fitri
Jurnal Abdimas Ilmiah Citra Bakti Vol. 5 No. 4 (2024)
Publisher : STKIP Citra Bakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.38048/jailcb.v5i4.4408

Abstract

Desa Gading Winongan di Kabupaten Pasuruan memiliki prevalensi stunting yang tinggi, yaitu 35,7% pada tahun 2022, dengan 23 balita tercatat mengalami stunting. Masalah ini diperparah oleh rendahnya pengetahuan ibu terkait pola asuh dan asupan gizi anak. Kegiatan pengabdian ini bertujuan meningkatkan pemahaman dan keterampilan orang tua, khususnya ibu, dalam menerapkan pola asuh yang mendukung pencegahan stunting melalui edukasi dan pendampingan langsung. Mitra kegiatan adalah kader posyandu dan ibu dengan anak stunting. Metode pelaksanaan menggunakan pendekatan Asset-Based Community Development (ABCD) melalui tahapan studi lapangan, edukasi pola asuh, demo memasak menu sehat, serta evaluasi melalui pretest dan posttest. Hasil menunjukkan peningkatan signifikan pada aspek pengetahuan: ibu dengan pengetahuan tinggi meningkat dari 53% menjadi 80%, serta pada aspek persepsi meningkat dari 60% menjadi 73%. Kegiatan ini terbukti efektif dalam meningkatkan kesadaran orang tua terhadap pentingnya pola asuh dan pemberian stimulus sejak dini sebagai strategi preventif terhadap stunting. Program ini berpotensi direplikasi sebagai model intervensi edukatif di wilayah lain yang menghadapi permasalahan serupa.
FETAL HEALTH RISK STATUS IDENTIFICATION SYSTEM BASED ON CARDIOTOCOGRAPHY DATA USING EXTREME GRADIENT BOOSTING WITH ISOLATION FOREST AS OUTLIER DETECTION Sari, Firda Yunita; Rini Novitasari, Dian Candra; Hamid, Abdulloh; Haq, Dina Zatusiva
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 3 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss3pp1711-1724

Abstract

Premature birth and birth defects contribute significantly to infant mortality, highlighting the need for early identification of fetal health risks. This study uses XGBoost for fetal health classification, integrating IForest for outlier detection to improve model performance. By varying the contamination percentage, learning rate (η), maximum depth, and n_estimator, the best results were achieved at CP = 8%, η = 0.01, max_depth = 7, and n_estimator = 100, which resulted in 100% accuracy, sensitivity, and specificity with a calculation time of 0.36 seconds. IForest effectively reduced the dataset from 2126 to 1956 samples by removing outliers, improving accuracy by 3.76%, and reducing computation time by 0.51 seconds. These findings suggest that IForest improves classification efficiency while maintaining high predictive performance, supporting early identification of fetal health risks to aid timely medical intervention.
Implementation of BiLSTM to Predict World Crude Oil Prices Sari, Firda Yunita; Ulinnuha, Nurissaidah
KUBIK Vol 10 No 1 (2025): IN PRESS
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The main source of energy worldwide is crude oil, which is used by almost all countries as an energy source. Crude oil plays a key role in driving the global economy, especially in the industrial and transportation sectors. Along with technological developments, crude oil price predictions can be made more sophisticated using artificial intelligence-based methods, one of which is the Bidirectional Long Short-Term Memory (BiLSTM) method which is a development of the Long Short-Term Memory (LSTM) method by combining past and future information when processing sequential data, BiLSTM uses forward and backward LSTM simultaneously to increase accuracy. The study used world crude oil price data for 1 year. There are 57 tests with several parameters such as data division, number of neurons, batch size, and activation function. After testing with the BiLSTM method for 57 scenarios, there is the smallest MAPE value of 0.09% at a data division of 90:10, number of neurons 100, batch size of value 4, and ReLu activation function. The resulting prediction model is highly accurate based on the MAPE criterion value.
Implementation of BiLSTM to Predict World Crude Oil Prices Sari, Firda Yunita; Ulinnuha, Nurissaidah
KUBIK Vol 10 No 1 (2025): IN PRESS
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The main source of energy worldwide is crude oil, which is used by almost all countries as an energy source. Crude oil plays a key role in driving the global economy, especially in the industrial and transportation sectors. Along with technological developments, crude oil price predictions can be made more sophisticated using artificial intelligence-based methods, one of which is the Bidirectional Long Short-Term Memory (BiLSTM) method which is a development of the Long Short-Term Memory (LSTM) method by combining past and future information when processing sequential data, BiLSTM uses forward and backward LSTM simultaneously to increase accuracy. The study used world crude oil price data for 1 year. There are 57 tests with several parameters such as data division, number of neurons, batch size, and activation function. After testing with the BiLSTM method for 57 scenarios, there is the smallest MAPE value of 0.09% at a data division of 90:10, number of neurons 100, batch size of value 4, and ReLu activation function. The resulting prediction model is highly accurate based on the MAPE criterion value.
COMPARISON OF SPHERICAL TRIGONOMETRY METHOD, JEAN MEEUS ALGORITHM AND GOOGLE QIBLA FINDER IN DETERMINING OF THE QIBLA DIRECTION OF ISLAMIC HOSPITAL Sari, Firda Yunita; Yusuf Ababil, Achmad Fachril; Nafis, Urwatun; Ardelia, Nita; Khasanah, Rofina Muti'atun; Ulinnuha, Nurissaidah; Hamid, Abdulloh
Al-Hilal: Journal of Islamic Astronomy Vol 5, No 2, 2023
Publisher : Fakultas Syari'ah dan Hukum UIN Walisongo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21580/al-hilal.2023.5.2.17192

Abstract

Accuracy in facing the Qibla is an essential part of performing prayers. This vital value is evident when many mosques are built in public places. This article is qualitative with field data sources, namely coordinate points at the Jemursari Islamic Hospital mosque, Surabaya Islamic Hospital, and Al-Irsyad Hospital Surabaya. Once collected, the data was analyzed using three methods for calculating Qibla direction, namely Spherical Trigonometry, Jean Meeus, and Google Qibla Finder. This article found that the three methods obtained the same results at the Jemursari Islamic Hospital at 294°3'5", at the Surabaya Islamic Hospital at 294° 3'6", and at the Al-Irsyad Surabaya Hospital at 294°3'5 ". However, there is a difference between calculations and field measurements of 2°–7°, including within the Qibla deviation tolerance. It can be concluded that these three methods can accurately determine the Qibla direction in various locations. However, re-checking is required if the measurements exceed the tolerance limits.
Pemodelan Matematika Pada Penyebaran Penyakit Tuberculosis di Provinsi Jawa Timur Sari, Firda Yunita; Maulidya, Rahmania; Hilmi, Moh. Aditya Sirojul; Wahyudi, Sharenada Norisdita; Fransisca, Velicia; Putri, Anindya Maya; Asyhar, Ahmad Hanif; Ulinnuha, Nurissaidah
Journal of Mathematics Education and Science Vol. 7 No. 2 (2024): Journal of Mathematics Education and Science
Publisher : Universitas Nahdlatul Ulama Sunan Giri Bojonegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32665/james.v7i2.2733

Abstract

Tuberculosis yang banyak dikenal dengan sebutan TBC ialah suatu penyakit pernapasan yang menular, dipicu karena adanya Mycobacterium Harituberculosis. TBC menempati peringkat ke-2 setelah COVID-19 sebagai penyakit menular dengan tingkat kematian tertinggi di seluruh dunia. Pada tahun 2020 Indonesia menempati urutan ke-3 dalam kasus TBC tertinggi dibawah India dan Tiongkok. Pada tahun 2021 Provinsi Jawa Timur menjadi peringkat tertinggi ketiga dengan kasus TBC sebesar 466.297 jiwa. Penelitian ini bertujuan untuk mengetahui hasil analisis kestabilan model matematis dan simulasi dari dinamika penyebaran penyakit TBC pada tahun 2021 di Jawa Timur dengan keterbaruan yaitu perbandingan parameter uji coba menggunakan metode runge-kutta orde 4 dan model matematis SITR. Model tersebut merupakan pengembangan dari model SIR dengan menambahkan kompartemen T (treatment). Dalam penelitian didapatkan hasil dari model matematika SITR pada penyakit tuberculosis memperoleh kestabilan titik kesetimbangan endemik dan ketidakstabilan titik kesetimbangan bebas penyakit, hal ini disebabkan bilangan reproduksi dasar kedua parameter , yang menunjukkan bahwasanya Tuberculosis di Provinsi Jawa Timur berpotensi mewabah. Maka diperlukan upaya dalam mencegah dan mengendalikan penyebaran penyakit ini supaya mengurangi dampaknya terhadap kesehatan masyarakat.