Claim Missing Document
Check
Articles

Found 3 Documents
Search

Klasifikasi Sebaran Wilayah dengan Risiko Penyakit Mers di Provinsi Jawa Timur dengan Menggunakan Algortima Support Vector Machine (SVM) Wahyudi, Sharenada Norisdita; Hafiyussholeh, Moh.; Susanto, Hugeng; Khaulasari, Hani
Journal of Mathematics Education and Science Vol. 7 No. 2 (2024): Journal of Mathematics Education and Science
Publisher : Universitas Nahdlatul Ulama Sunan Giri Bojonegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32665/james.v7i2.3269

Abstract

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) ialah penyakit saluran pernapasan yang menular melalui virus corona. MERS pertama kali muncul dan terkonfirmasi pada tahun 2012 dengan gejala awal berupa demam, batuk berdahak disertai dengan sesak napas. MERS Merupakan salah satu penyakit mematikan dengan jumlah kasus lebih dari 2600 kasus terkonfirmasi dengan total 935 kematian. Penyakit ini paling banyak terkonfirmasi di Arab Saudi tepatnya di Mekkah, yang mana kota tersebut menjadi pusat terlaksananya ibadah Haji dan Umroh bagi seluruh umat muslim dunia. Jawa Timur merupakan salah satu wilayah dengan jumlah kuota jamaah haji tertinggi di Indonesia yang memiliki potensi tinggi terjadinya penyebaran penyakit MERS-Cov. Oleh karenanya perlu dilakukan suatu usaha mitigasi resiko guna memperkecil potensi terjadinya sebaran penyakit MERS di Indonesia khususnya di Jawa Timur, salah satunya ialah melakukan prediksi sebaran potensi menggunakan algoritma SVM. Hal itu dikarenakan SVM dinilai unggul dalam mengolah data non linear dengan baik karena sudah dilengkapi dengan bantuan fungsi kernel dalam kinerja algortimanya. Data yang digunakan pada penelitian ini adalah data sebaran potensi kasus MERS di Jawa Timur pada tahun 2023 yang didapatkan dari Dinas Kesehatan Provinsi Jawa Timur. Dilakukan beberapa pengujian untuk mendapatkan hasil optimal dengan menggunakan beberapa pembagian proporsi data training:testing, diantaranya 60:40, 65:35, 70:30, 75:25, 80:20, dan didapati hasil pengujian tertinggi terdapat pada proporsi data sebesar 75:25 dengan nilai akurasi 0.9 (90%).
Pemodelan Matematika Pada Penyebaran Penyakit Tuberculosis di Provinsi Jawa Timur Sari, Firda Yunita; Maulidya, Rahmania; Hilmi, Moh. Aditya Sirojul; Wahyudi, Sharenada Norisdita; Fransisca, Velicia; Putri, Anindya Maya; Asyhar, Ahmad Hanif; Ulinnuha, Nurissaidah
Journal of Mathematics Education and Science Vol. 7 No. 2 (2024): Journal of Mathematics Education and Science
Publisher : Universitas Nahdlatul Ulama Sunan Giri Bojonegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32665/james.v7i2.2733

Abstract

Tuberculosis yang banyak dikenal dengan sebutan TBC ialah suatu penyakit pernapasan yang menular, dipicu karena adanya Mycobacterium Harituberculosis. TBC menempati peringkat ke-2 setelah COVID-19 sebagai penyakit menular dengan tingkat kematian tertinggi di seluruh dunia. Pada tahun 2020 Indonesia menempati urutan ke-3 dalam kasus TBC tertinggi dibawah India dan Tiongkok. Pada tahun 2021 Provinsi Jawa Timur menjadi peringkat tertinggi ketiga dengan kasus TBC sebesar 466.297 jiwa. Penelitian ini bertujuan untuk mengetahui hasil analisis kestabilan model matematis dan simulasi dari dinamika penyebaran penyakit TBC pada tahun 2021 di Jawa Timur dengan keterbaruan yaitu perbandingan parameter uji coba menggunakan metode runge-kutta orde 4 dan model matematis SITR. Model tersebut merupakan pengembangan dari model SIR dengan menambahkan kompartemen T (treatment). Dalam penelitian didapatkan hasil dari model matematika SITR pada penyakit tuberculosis memperoleh kestabilan titik kesetimbangan endemik dan ketidakstabilan titik kesetimbangan bebas penyakit, hal ini disebabkan bilangan reproduksi dasar kedua parameter , yang menunjukkan bahwasanya Tuberculosis di Provinsi Jawa Timur berpotensi mewabah. Maka diperlukan upaya dalam mencegah dan mengendalikan penyebaran penyakit ini supaya mengurangi dampaknya terhadap kesehatan masyarakat.
Implementasi Chi-Square dan Oversampling Pada Klasifikasi Kesehatan Janin dengan Support Vector Machine Wahyudi, Sharenada Norisdita; Ulinnuha, Nurissaidah; Hafiyusholeh, Moh
TELKA - Telekomunikasi Elektronika Komputasi dan Kontrol Vol 11, No 3 (2025): TELKA
Publisher : Jurusan Teknik Elektro UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/telka.v11n3.327-337

Abstract

Pemantauan kesehatan janin menjadi aspek penting karena hal tersebut merupakan bentuk antisipasi terkait deteksi potensi patologis yang berkemungkinan membahayakan janin maupun ibu hamil. Sebagaimana dilansir dalam website resmi UNICEF, setidaknya terdapat 2,3 juta bayi meninggal pada bulan pertama kelahiran dengan 90% dari total keseluruhan merupakan kasus kematian bayi didalam kandungan pada masa kehamilan diatas 20 minggu. Selain membahayakan bayi, kesehatan janin juga berdampak pada keselamatan ibu hamil. Oleh karena itu, perlu dilakukan suatu usaha mitigasi resiko guna memperkecil potensi kematian janin dengan mendeteksi kesehatan janin dengan melakukan klasifikasi dengan algoritma SVM. Data yang digunakan pada penelitian ini adalah hasil pemeriksaan kandungan berupa data cardiotocography, berisikan 2126 data yang berisikan 21 fitur yang terkategorikan menjadi 3 kelas yaitu 1665 normal, 295 kelas suspect dan 176 kelas pathologic. Berdasarkan perbedaan yang cukup signifikan pada jumlah data ditiap kelas, dilakukan balancing data dengan metode Synthetic Minority Over-Sampling Technique (SMOTE). Selain itu, dilakukan seleksi fitur dengan menggunakan Chi-Square pada 21 fitur yang kemudian didapati 12 fitur terpilih untuk diklasifikasikan menggunakan algoritma SVM. Skema klasifikasi dilakukan dengan beberapa tahapan, dan didapati bahwa penambahan seleksi fitur Chi-Square dan SMOTE berhasil meningkatkan akurasi klasifikasi menjadi 98%, dengan nilai presicion sebesar 99%, recall 98% dan F-1 Score sebesar 98%. Fetal health monitoring is an important aspect because it forms for detect potential pathologies that may endanger fetus and pregnant mother. As reported on UNICEF, at least 2.3 million babies die in the first month of birth with 90% of the total being cases of intrauterus fetal death. In addition to endangering the baby, fetal health also has an impact on pregnant mother. As an effort to minimize the potential and risk of fetal death, is classify the health status of the fetus using the SVM algorithm. The data used in this study are gynecological results in the field of cardiotocography data, containing 2126 data that have been categorized into 3 classes, namely normal, suspect and pathologic classes. Cardiotocography data in this study was included 2,126 observations distributed across 21 features grouped into three categories: 1,665 normal, 295 suspect, and 176 pathological. Given the significant variation in the number of observations across each category, a data balancing technique, known as the Synthetic Minority Over-Sampling Technique (SMOTE), was employed to address this imbalance. Furthermore, a feature selection process was implemented, employing the Chi-Square method on the 21 features. This method identified 12 features that were subsequently classified using the SVM algorithm. The classification scheme was executed in multiple stages, and it was observed that the incorporation of both Chi-Square and SMOTE feature selection led to a substantial enhancement in classification accuracy, reaching 98%, accompanied by a 99% precision value, 98% recall, and an 98% F-1 score.